
Value Types

Jim Fawcett

August 2019

Str Class

• In the next few pages we examine an implementa-
tion of an value type representing strings.

• Each of the most important member functions are
dissected. We discuss their:

– declaration: how you declare member functions in the
class declaration (part of STR module’s header file).

– Definition: how you define the function’s behavior in
its function body.

– Invocation: how you invoke this member of the STR
class.

• While this class makes a good vehicle for
instruction, you should prefer the string class
provided by the standard C++ library and
documented in class texts.

Str Manual Page

#ifndef STR_H

#define STR_H

///

// Str.h - header file for Str string class //

// ver 2.1 //

// //

// Language: Visual C++, ver 12.0 //

// Platform: Dell XPS 2720, Win 8.0 //

// Application: ADT example, CSE687 - Object Oriented Design //

// Author: Jim Fawcett //

// Syracuse University, CST 4-187 //

// fawcett@ecs.syr.edu, (315) 443-3948 //

///

/*

Class Operations:

=================

This class defines a string data type. It is a simple, but

effective user defined type. You should prefer the standard

C++ string class. The purpose of this class is to demonstrate

basic class construction techniques.

Instances of str class perform bounds checking on all indexed

operations and throw invalid_argument exceptions if the index

is out of bounds, e.g., does not refer to a valid character.

Public Interface:

=================

Str s; construct an empty string;

Str s(15); construct empty string that holds 15 chars

Str s1 = s; construct s1 as a copy of s

Str s2 = "a string"; construct s2 holding a literal string

s1 = s2; assign the value of s2 to the string s1

s1[2] = 'a'; modify the 3rd character of s1

Maintenance Page

///

// Build Process //

///

// Required files: //

// Str.h, Str.cpp //

// //

// compiler command: //

// cl /GX /DTEST_STR str.cpp //

///

/*

Maintenance History:

====================

ver 2.1 : 12 Jan 2014

- added move constructor and move assignment for C++11

ver 2.0 : 25 Jan 2009

- added initialization sequences.

ver 1.9 : 29 Jan 2006

- cosmetic changes

ver 1.8 : 03 Feb 2005

- added operator+, changed return type of operator+= from void

to str&, qualified promotion ctor with explicit - note impact

on test stub.

ver 1.7 : 01 Feb 2005

- str has an invariant that all string arrays held by the pointer

array must be null terminated. The default constructor, str(),

did not correctly satisfy that, but now has been fixed.

ver 1.6 : 29 Jan 2004

- removed all checks for memory allocation failures, as the

standard language behavior is to throw exceptions when this

Class Declaration

class Str {

private:

char *array;

int len, max;

public:

Str(int n = 10); // void and size ctor

Str(const Str& s); // copy ctor

Str(Str&& s); // move ctor

explicit Str(const char* s); // promotion ctor

~Str(); // dtor

Str& operator=(const Str& s); // copy assignment operator

Str& operator=(Str&& s); // move assignment operator

char& operator[](int n); // index operator

char operator[](int n) const; // index operator for const
str

Str& operator+=(char ch); // append char

Str& operator+=(const Str& s); // append str s

Str operator+(const Str& s); // concatenate strs

operator const char* (); // cast operator

int size() const; // return number of chars

void flush(); // clear string contents

};

len is current
char count. max
is the size of
allocated storage

Str Void (default) Constructor

• Purpose:

– to build a default object (or array of default
objects)

– if, and only if, no constructors are defined by
the class, the compiler will generate a void
constructor which does void construction of class
bases and members

• Declaration (part of class declaration in header file):

Str(int n=10); // can be used for void con-

// struction with default arg

• Definition (part of implementation file):

//----< sized constructor >------------------------------

Str::str(int n) : array(new char[n]), max(n), len(0)
{

array[0] = ‘\0’;

}

• Invocation (part of test stub or application code):

Str s; // define default object
Str s[5]; // initialize array
Str* sptr = new str; // initialize object on heap

• Note that constructors and the destructor have no
return values, not even void.

new throws an exception if
allocation fails.

Note:

Chapter 4 - Abstract Data Types 22

• Purpose:

– to build object which is a logical copy of
another

– used when objects are passed or returned by value

– if no copy constructor is defined by the class
the compiler will generate one if needed which
does member-wise copies.

• Declaration (in class declaration in header file):

Str(const str& s);

• Definition (in implementation file):

//----< copy constructor >----------------------------

Str::str(const str& s)
: array(new char[s.max]), max(s.max), len(s.len)

{
for(int i=0; i<=len; i++)

array[i] = s.array[i];

};

• Invocation (in test stub or application code)

Str s2 = s1; // copy construction!

Str s2(s1); // same as above

Str s[2] = { s1, s2 }; // copy state into array

Str *sptr = new Str(s1); // copy state onto heap

void myFun(Str s); // pass by value

Str yourFun(); // return by value

Str Copy Constructor

No assignment here. Just
the single copy operation

Chapter 4 - Abstract Data Types 23

• Purpose:

– to build object stealing the resources of a
temporary

– used when moveable objects are returned by value

– if no move constructor is defined by the class
will fallback to copy.

– compiler will generate only if no potentially
implicit operations are explicitly declared,
i.e., copy ctor, …

• Declaration (in class declaration in header file):

Str(Str&& s);

• Definition (in implementation file):

//----< copy constructor >----------------------------

Str::Str(str&& s)
: array(s.array), max(s.max), len(s.len)

{
s.array = nullptr;

};

• Invocation (in test stub or application code)

Str testFunction()
{

Str s(“string created in testFunction”);
return s;

}

Str sTest = testFunction();

Str Move Constructor

sTest gets temporary s’s
array

• Purpose:

– to coerce an object of another class to one of
this class

– in this case we coerce a “C string” to become a
str object

– compiler will not generate promotion ctor

• Declaration (in class declaration):

explicit Str(const char* s);

• Definition (in implementation file)

//----< promotion constructor >-----------------------

Str::Str(const char* s)
: len(static_cast<int>(strlen(s)))

{

max = len+1;

array = new char[len+1];

for(int i=0; i<=len; i++)

array[i] = s[i];

}

• Invocations (in test stub or application code):

Str s = str(“this is a string”);

Str sa[2] =

{ Str(“first string”) , Str(“second string”) };

Str *sptr = new Str(“defined on heap”);

void myFun(const Str &s); myFun(Str(“a string”));

Promotion Constructor

Every constructor
that takes a
single argument
of a type
different than the
class type is a
promotion
constructor.
They’re used for
conversions and
can be called
implicitly if not
qualified as
explicit.

• Purpose:

– to return system resources when object goes
out of scope

– if no destructor is defined by the class the
compiler will generate one which calls each
member’s destructor if one is defined

• Declaration (in class declaration in header file):

~Str(void);

• Definition (in implementation file):

//----< destructor >----------------------------

Str::~Str() {

delete [] array;

max = len = 0;

array = nullptr;

}

• Invocation (in test stub or application code):

– Destructors are called implicitly whenever
an object goes out of scope.

– When you allocate an object using the “new”
operator a constructor of the object is
called to initialize the object.

Str *sptr = new Str;

– When you delete the pointer to an allocated object
its destructor is called automatically.

delete sptr;

Destructor

You must delete with
[] if you new with []!

• Purpose:

– to assign the state values of one existing object
to another

– if no copy assignment operator is defined by the
class the compiler will generate one which does
member-wise copy assignments

• Declarations (in class declaration in header file):

Str& operator=(const Str& s);

• Definitions (in implementation file):

Str& str::operator=(const Str& s) {

if(this == &s) return *this; // don’t assign to self

if(max >= s.len+1) { // don’t allocate new

len = s.len; // storage if enough

int i; // exists already

for(i=0; i<=len; i++)

array[i] = s.array[i];

return *this;

}

delete [] array; // allocate new storage

array = new char[max = s.max];

len = s.len;

for(int i=0; i<=len; i++)

array[i] = s.array[i];

return *this;

}

• Invocation (in test stub or application code):

s2 = s1; // algebraic notation

s2.operator=(s1); // equivalent operator notation

Copy Assignment Operator

Note i<=len because we want
to copy terminal ‘\0’

• Purpose:

– to assign the state values of a temporary object to
another by moving, e.g., by passing ownership of
the state values.

– if no other potentially implicit operation is
defined, the compiler will generate a move
assignment which does member-wise move assignments
if defined

• Declarations (in class declaration in header file):

Str& operator=(Str&& s);

• Definitions (in implementation file):

Str& str::operator=(Str&& s) {

if(this == &s) return *this; // don’t assign to self

max = s.max;

len = s.len;

delete [] array;

array = s.array;

s.array = nullptr;

return *this;

}

• Invocation (in test stub or application code):

s1 = s2 + s3; // s1 move assigned from temporary

S2 = std::move(s3); // s3 no longer owns internal chars
// we normally would not do this

Move Assignment Operator

• Purpose:

– read or write one character from the string

• Declaration (in class declaration in header file):

char& Str::operator[](int n);

• Definition (in implementation file):

char& Str::operator[](int n) {

if(n < 0 || len <= n)
throw invalid_argument(“index out of bounds”);

return array[n];

}

• Invocation (in test stub or application code):

The function returns a reference to the nth
character so client code can either read or write
to the result, e.g.:

char ch = s[3] = ‘z’;

This statement is equivalent to:

s.operator[](3) = ‘z’;

Index Operator

Standard exception type

Note

Note: We are assigning to
a function! How does that
work?

• Purpose:

– read one character from const str object

• Declaration (in class declaration in header file):

char Str::operator[](int n) const;

• Definition (in implementation file):

char Str::operator[](int n) const {

if(n < 0 || len <= n)
throw invalid_argument(“index out of bounds”);

return array[n];

}

• Invocation (in test stub or application code):

The function returns a copy of the nth character

So client code can only read the result, e.g.:

char ch = s[3];

Index Operator for const Str

Note

Note

Note

• Purpose:
– add one character to the end of string

• Declaration (in class declaration in header file):

void Str::operator+=(char ch);

• Definition (in implementation file):

void Str::operator+=(char ch) {
if(len < max-1) { // enough room
array[len] = ch; // so just append
array[len+1] = '\0';
len++;

}
else { // not enough room so resize array
max *= 2; // multiply by 2
char *temp = new char[max];
for(int i=0; i<len; i++)
temp[i] = array[i];

temp[len] = ch;
temp[len+1] = '\0';
len++;
delete [] array;
array = temp;

}
}

• Invocation (in test stub or application code):

s += ‘a’;

Append a Character

Increase size in binary
steps, so fewer memory
allocations if we guess
wrong.

• Purpose:

– add one string to the end of another string

• Declaration (in class declaration in header file):

void Str::operator+=(const Str& s);

• Definition (in implementation file):

void Str::operator+=(const Str& s) {

if(len < max-s.size()) {

for(int i=0; i<=s.len; i++)

array[len+i] = s[i];

len += s.size();

}

else {

max += max + s.size();

char *temp = new char[max];

for(int i=0; i<len; i++)

temp[i] = array[i];

for(int i=0; i<s.size(); i++)

temp[len+i] = s[i];

temp[len+s.size()] = ‘\0’;

len += s.size();

delete [] array;

array = temp;

}

}

• Invocation (in test stub or application code):

s += “ another string”;

Append Another String

• Purpose:

– add two strings to create a new string result

• Declaration (in class declaration in header file):

Str Str::operator+(const Str& s);

• Definition (in implementation file):

Str Str::operator+(const Str& s) {
Str temp = *this;
temp += s;
return temp;

}

• Invocation (in test stub or application code):

s = Str(“first, ”) + Str(“second”);

Calls operator+(const Str&) then operator=(Str&&)

Addition Operator

• Purpose:

– to coerce object of class to an object of
another class

– here we cast a str object to a pointer to a
const char array

• Declaration (in class declaration in header file):

Str::operator const char*();

• Definition (inline in header file):

inline Str::operator const char*() {

return array;

}

• The const says that the character array values can’t be
changed.

• Note that the cast operator is the only operator which has,
by definition, no return value (not even void).

• Invocations (in test stub or application code):

const char* ptr = s; // implicit invocation
const char* ptr = static_cast<const char*>(s)
const char* ptr = char*(s); // newer cast notation
const char* ptr = (char*)s; // classic cast notation

Cast Operator

• Purpose:

– send string to output stream

• Declaration (in header file):

ostream& operator<<(std::ostream& out, const Str& s);

• Definition (in implementation file):

Note that this function is not a member of the str
class nor is it a friend.

ostream& operator<<(ostream& out, const Str& s) {

for(int i=0; i<s.size(); i++)

out << s[i];

return out;

}

• Invocation (in test stub or application code):

std::cout << s;

Insertion Operator

• Purpose:

– accept a string from input stream

• Declaration (in header file):

istream& operator>>(std::istream &in, Str &s);

• Definition (in implementation file):

Note that this function is not a member of the
Str class nor is it a friend.

istream& operator>>(istream& in, Str& s)
{

char ch;

s.flush();

in >> ch;

while((ch != '\n') && in.good()) {

s += ch;

in.get(ch);

}

return in;

}

• Invocation (in test stub or application code):

cin >> s;

Extraction Operator

str memory management means this
function is simple!

• A C++ operator is really just a function.
Assignment, for example, may be written
either way shown below:

x = y;

or

x.operator=(y);

Here, the x object is invoking the
assignment operator on itself, using y for
the assigned values.

• The left hand operand is always the invoking
object and the right hand operand is always
passed to the function as an argument.

• General form of the binary operator:

x^y x.operator^(y) – member function

x^y operator^(x,y) – global function

C++ Binary Operator Model

• We often write code which contains type
mismatches.

For example:

str s1 = “this is a string”;

The compiler scans this expression, notes the
type mismatch, and looks for means to resolve
it.

It finds the promotion constructor which takes
a pointer to char and builds an str object.
So the compiler generates code to build the s1
str object.

• We write promotion constructors and cast
operators so just this kind of “silent”
coercion can happen. It makes programming
much easier when sensible conversions happen
automatically.

string object pointer to char (literal string)

Coercions

Overloading

• Function overloading occurs when two
functions have the same identifier but
different calling sequences, e.g., the
sequences of types passed as
arguments.

– str(int n=10);

– str(const str& s);

Here str is a common identifier used
for both functions. The functions
differ in their calling sequences,
e.g., int n vs. const str&.

• The compiler distinguishes overloaded
functions on their sequences, but not
on return values.

– char& operator[](int n);

– char operator[](int n) const;

are distinguished by const, not the
return type.

Constness

• What const implies is determined by
where you find it:

– str(const str& s);

is a contract that the argument s will
not be changed. The compiler attempts
to enforce the contract.

– char operator[](int n) const;

implies the state of the object on
which the operator is applied will not
change. Again, the compiler attempts
to enforce the contract. Thus:

– const str cs = “a constant string”;

– cs[3] = ‘a’;

will fail to compile because the
compiler will call the const version
of operator[] on the const string and
will disallow changes to the string.

• When a C++ compiler evaluates an expression it
performs the following steps:

– evaluates all function invocations, replacing the
call with its return value

– scans the expression checking for type
mismatches.

If any are found, the compiler looks for ways to
resolve the mismatches by implicitly calling a
promotion constructor or cast operator.

If there is exactly one way to resolve the
mismatch the compiler generates code to do so,
and the expression evaluation succeeds.

If there is more than one way to resolve the
mismatch the compiler declares an ambiguity and
the compilation fails.

– All stack frames for any functions invoked by
the expression are guaranteed to be valid until
the evaluation is complete.

This allows the return values of functions, which
are deposited in an output area of the stack
frame to participate in the expression just like
the value of a cited variable. Any value
residing in a stack frame during evaluation is
called a temporary.

C++ Expression Model

• User defined value types can be endowed (by
you) with virtually all of the capabilities of
built in types:

– declaration of multiple objects at either
compile or run time

– declaration and initialization of arrays of
objects

– objects take care of themselves, e.g., acquire
and release system resources.

– objects can participate in mixed type
expressions, implicitly calling promotion
constructors or cast operators as needed

– objects can be assigned and passed by value to
functions

– objects can use the same operator symbolism as
built in types

• All of these things have syntax provided by
the language, but semantics provided by you.

• You can choose to provide as much or as little
capability as you deem appropriate for your
class.

Conclusions - VTs

PRESENTATION END

