
Software Structure
Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2017

Introduction

What is Program Structure?

An Example

Program Structure 3

What is Software Structure?

• Partitions – classes, packages, systems

• Separation of concerns, rate of change, performance

• Communication

• How do the parts make requests and send notifications?

• Sharing

• How is data shared between the parts?

• Performance

• Control

• Which parts interact with which other parts?

Program Structure 4

Program Structure
• Logical – class structure:

• Interfaces, classes, and class relationships

• Package – code file structure:

• Package dependency tree, as shown in package diagrams

• Subsystems, e.g., collection of packages separated by interfaces with
each focused on specialized processing

• For a radar those might be: signal processing, beam forming, data management,
operator control, communication.

• Execution – binary structure:

• Monolithic Program, e.g., an exe

• Program with loadable Dynamic Link Libraries (DLLs)

• Cooperating processes, e.g., client-server, server federation, etc.

Program Structure 5

Code Analyzer Example

• The next slide shows the logical structure of a code analyzer,
focusing on the front-end analysis.

• There are four modules

• Lexical Scanner – reads token groups from stream

• Parser with Rules and Actions – builds AST

• Executive with builder - assembles all the parts

• Display – maps AST data into information

• You will find more discussion in the Parser Blog

Program Structure 6

Program Structure 7

Scanner

Parser

Executive

+addRule(in pRule : IRule*) : void

+parse() : bool

-breakingRules : vector<IRule*>

-nonbreakingRules : vector<IRule*>

-ITokColl : ITokCollection*

Parser

+addAction(in pAction : IAction*) : void

+doActions(in pTokColl : ITokCollection*) : void

+doTest(in pTokColl : ITokCollection*) : bool

-actions : vector<IAction*>

IRule

+doAction(in pTokColl : ITokCollection*) : void

IAction

+get() : bool

+operator[](in n : int) : string

+find(in tok : string) : int

+remove(in tok : string) : bool

-pToker : Toker*

-toks : vector<string>

XmlParts or SemiExp

DerivedRule1

DerivedAction2

+getTok() : string

+attach(in name : const String&, in isFile : bool) : bool

-scToks : string

-putbacks : vector<char>

Toker

istream

ifstream istringstream

Parsing Facility

ostream

GUIExec

A

A

A

A

DerivedAction1

A

A

IBuilder

ConfigureParser

AA

DerivedRule2 ScopeStack

A

ConsoleExec

Repository

Display

Formatter Display

A

ITokCollection
AbstrSynTree

Software Structure Contents

• Data Driven

• Client server

• Three tier

• Model-View-Controller

• Layered Structure Driven

• Components

• Services

• Analysis Driven

• One pass

• Two passes

Program Structure 8

• Communication Driven

• Client Server

• Peer-to-peer

• Middleware

• Thread & Event Driven

• Single Threaded Apartment (STA)

• Parallel execution

• Pipeline execution

• Enterprise Computing

• Federated systems

Data Driven Structures

Programs that are dominated by management of data

Web applications are often Data Driven

Program Structure

Data Driven Structures

• Some program structures are driven by the presentation and
management of data:

• Client-Server

• Three-Tier

• Model-View-Controller

Data-Driven Program Structure 10

Structure: Client-Server

• Behavior:

• Server is passive, waits for client requests

• Client requests are synchronous – after sending request client waits for reply

• Server contains data shared among its clients

• Server handles multiple concurrent clients

• Without additional structure system may become tightly coupled and difficult to change

• Example:

• Web server and browser clients

Data-Driven Program Structure 11

Client Server

Data-Driven Program Structure 12

Data-Driven Program Structure 13

Data-Driven Program Structure 14

Sharing Data
• Relational Databases – SQL Server, mySql, …

• ACID – Atomicity, Consistency, Isolation, Durability

• ACID => Transactional

• No SQL Databases – MongoDB, CouchDB

• Key-Value, Document, Hierarchal

• Very flexible data structure

• Consistency is pushed onto the application

• File Systems

• Ad. Hoc. in-memory repositories

• Extensible Record Stores – Google’s Big Table

• Distributed partitioned tables

• Document Stores – CouchDB

• Multi-indexed objects aggregated into domains

Data-Driven Program Structure 15

Separation of Concerns

• Except for the simplest of applications it’s not a good idea to
bind presentation, control, and data together.

• There often are many views, more than one application mode, many
sources of data.

• If we bind these all together we get spaghetti code

• Very hard to test, hard to maintain, hard to document.

Data-Driven Program Structure 16

Structure: Three-Tier

• Structure:

• Partitioned into presentation, application logic, and data
management.

• Intent is to loosely couple these three aspects of an application to
make it resilient to change.

• Examples:

• Most well-designed applications.

Data-Driven Program Structure 17

Basic MVC Structure

Data-Driven Program Structure 18

View Controller ModelRender

User Actions

Reply

Request

User Inputs

Model-View-Controller

• Structure:

• MVC is a refined version of the Three-Tier structure, intended to
support multiple views and data models.

• Models do all data storage management.

• Views present information to user, format output but do no other
transformations on data.

• Controllers accept inputs, implement application processing, and use
Models and Views to provide the application’s behavior.

• Application phases often have one controller each.

• Models may be shared between controllers.

• Example: Asp.Net MVC

Data-Driven Program Structure 19

MVC – With View & Application Models

Data-Driven Program Structure 20

▪ Views and Models often have some
substructure, e.g.:

View Controller
Applic

Model
Render

User Actions

Reply

Request
View

Model

Data

Model

View – View Model

Data-Driven Program Structure 21

▪ A view is what gets rendered

▪ A view model is an abstraction that:

 Defines resources that many be used in several
places.

 Defines styles that may be used in several places

 Defines an object model for the application to
manipulate

Application vs. Data Models

Data-Driven Program Structure 22

▪ Application model

 Defines classes for all the entities a user knows and
cares about, e.g., orders, customers, products, etc.

▪ Data model

 Defines wrapper classes for tables and stored
procedures

 Manages connections

▪ Object to Relational Mapping

 Relationships between application objects and
data objects.

Object Relational Mapping
• Data Layers often have an ORM substructure

• Examples: Hibernate, Microsoft Entity Framework

Data-Driven Program Structure 23

Application Objects

DB Objects (wrap tables)

Mapping Relationships

N-Tier Structure

• So, the three tier MVC has morphed into a five tier
V-VM-C-AM-DM

• View – what gets rendered

• View Model – an abstraction of the view

• Controller – routes View events to handlers in the Application Model

• Application Model – classes that model the “business” logic

• Data Model – models data storage tables

• Database, XML file, custom data structures

Data-Driven Program Structure 24

MVC – Multiple Controllers

Data-Driven Program Structure 25

View
Controller Model

View Controller
Model

View
Controller

Model

User inputs

User inputs

User inputs

Layer-Driven Structures

Components

Services

REST

Program Structure

Component Layered Structure

• Structure:

• A componentized system is composed of an application with many
pluggable component parts.

• A component is pluggable if it implements a plug-in interface,
published by the application, provides an object factory for activating
its internal objects, and is packaged as a dynamic link library (DLL).

• Example:

• http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/BlogParser.htm

almost implements.

Layer-Driven Program Structure 27

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/BlogParser.htm

Hiding Implementation Details

Layer-Driven Program Structure 28

Package A

Factory Interface

Package B

Factory InterfaceFactory

class B

class A

class C

class A

Example Componentized System
Separate presentation from application logic

Layer-Driven Program Structure 29

Component1 Component2 Component3

GUI

Asynchronous call

Asynchronous call

Asynchronous call

Service Layered Structure

• Provides a structure based on:

• System Services – things the user doesn’t think about

• Communication, storage, security, file caching, …

• User Services – things the user manipulates as part of the use of the
system

• Input, Display, Check-in/Check-out, …

• Ancillary – Things that are not part of the system mission but are
necessary

• Logging, extension hooks, test hooks, …

Layer-Driven Program Structure 30

Distributed Services

• Structure:

• Service oriented systems are simply client server.

• Usually the server is implemented with a web service or operating
system service.

• Web service is a web application that provides an interface for client software to
access.

• OS service is a system application that provides an interface for requests and an
administration interface for setting service startup and shutdown policies.

• Windows Communication Foundation (WCF) has extended that
model to support hosting in:

• desktop application

• windows service hosted with Windows Service Control Manager (SCM)

• web service hosted by Internet Information Server (IIS).

Layer-Driven Program Structure 31

UDDI

Registry

Web Site

DISCO file

WSDL

WEB Service

Discovery

Interface

SOAP Messages

Internet

Internet

C# Web Services, Banerjee, et. al.,

WROX, 2001

Layer-Driven Program Structure 32

WCF Protocols

• WCF supports:

• Http – SOAP over Http in clear text - BasicHttp

• Http – SOAP with security extensions – WsHttp

• NetTcp – SOAP over TCP

• SOAP – Simple Object Access Protocol

• An XML body for HTTP or TCP messages

• Usually contains a message body in XML defined by a Data Contract

• WCF is a very flexible, relatively easy to use, but heavy
weight communication mechanism

Layer-Driven Program Structure 33

REpresentational State Transfer
• REST is a message-passing communication system built on

the HTTP protocol, using the Web verbs:

• Get – retrieve a resource without changing the state of the server.

• Post – send information to the server that may change its state.

• Put – place a resource on the server.

• Delete – remove a resource from the server.

• Nouns – the resources exposed by the system – are
identified by URIs – Uniform Resource Identifiers

• Its encoding is UTF text, not SOAP or some other complex
messaging format, but may use encryption, as in HTTPS.

Layer-Driven Program Structure 34

Published REST APIs
• Amazon REST API

• https://docs.aws.amazon.com/apigateway/api-reference/

• Azure REST API

• https://docs.microsoft.com/en-us/rest/api/azure/

• Google Drive APIs

• https://developers.google.com/drive/api/v2/reference/

• Dell Open Automation Guide

• https://www.dell.com/support/manuals/us/en/04/force10-open-automation/oa_9.8.2.0_cli_config_pub/rest-
api?guid=guid-3b60f154-bfd4-4da3-aa11-8e97c7018d4a&lang=en-us

• IBM REST APIs

• https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/bi12017_.htm

Program Structure 35

https://docs.aws.amazon.com/apigateway/api-reference/
https://docs.microsoft.com/en-us/rest/api/azure/
https://developers.google.com/drive/api/v2/reference/
https://www.dell.com/support/manuals/us/en/04/force10-open-automation/oa_9.8.2.0_cli_config_pub/rest-api?guid=guid-3b60f154-bfd4-4da3-aa11-8e97c7018d4a&lang=en-us
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_10.0.0/com.ibm.etools.mft.doc/bi12017_.htm

Analysis Driven Structure

Packages

Pipelines

Program Structure 36

Analysis Driven Structure

• Packages

• Gather working set (inputs needed for analysis)

• Execute one or more phases of analysis

• filter and interpret resulting data to provide information

• Present the analysis information

Analysis-Driven Program Structure 37

Package Structure – Analysis Driven

Analysis-Driven Program Structure 38

Gather

Inputs

Executive

Display

Results

collection

request

sends

parameters
computation

request

display

request

selects

filter

Transform

Inputs
collect

inputs

collect

results

Pipelined Dependency Analysis

Analysis-Driven Program Structure 39

filespecs

Type Analysis

Merge Type

Tables

Partial TypeTable

Filespecs

And

Type TableDep, Relation

Analysis
Partial Results

Merge Results

Start Pass #2

Start Pass #1

Scheme for Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Thread Safe

Blocking Queue

Communication Driven Structure

Client-Server

Peer-to-Peer

MiddleWare

Program Structure 40

Communication Driven Structure
• When users, data, and application logic are distributed

across processes and machines communication becomes
important:

• Client-Server

• Peer-to-peer

• Communication Middleware

• RPC (RMI)

• Message-Passing

Communication-Driven Program
Structure

41

Peer-To-Peer Asynchronous Message-Passing Structure

Communication-Driven Program
Structure

42

Receiver

Sender

Receiver

Sender

Receiver

Sender

Sending

Message

Each Peer is a separate process
possibly on separate machines

Communication Performance

• Suppose that processing a request takes T units of time if
requester and provider are in the same process.

• Executing the same request across processes takes about 10
T units of time.

• Executing the same request across a network takes about
100 T units of time.

• Executing the same request across the internet takes about
1000 T units of time.

Communication-Driven Program
Structure

43

Structure: Client-Server

• Behavior:

• Server is passive, waits for client requests

• Server handles multiple concurrent clients

• Without additional structure system may become tightly coupled and
difficult to change

• Example:

• Web server and browser clients

Communication-Driven Program
Structure

44

Structure: Peer-To-Peer

• Behavior:

• Peers interact, sending and receiving messages from each other.

• Peers are sometimes identical.

• Many Peer-to-Peer models support central or distributed locater
services.

• Examples:

• Project #4

• Bit-Torrent

• Napster

Communication-Driven Program
Structure

45

Receiver

Sender

Receiver

Sender

Receiver

Sender

Sending

Message

Each Peer is a separate process
possibly on separate machines

Communication-Driven Program
Structure

46

Peer UIForm

Peer UIForm

client

Send thread

Server

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

Main thread

Posts message

client

Send thread

Server

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

main thread

posts message

Remoting Object

Receive Thread

created by Run-

Time system

Send thread created

by client main thread.

Static

Collection

Of client

references

Static

Collection

Of client

references

A Reusable Communication Structure

Servers use

message IDs or

types to figure out

what to do with

each message.

Processing

Processing

Communication Types

• Remote Procedure Call (RPC):

• Supports function call semantics between processes and machines.

• Sends messages over wire but provides stack frames for client and
server to support the function call model.

• Examples: COM, CORBA, WCF

• Message Passing:

• Sends message with encoded request and/or data

• Message contains endpoint information for routing

• Directly supports asynchronous processing

• Examples: Internet, Web, SMA and OOD projects

Communication-Driven Program
Structure

47

Communication Patterns

• TwoWay:
Synchronous Request, wait for reply

• Duplex:
asynchronous request, reply sent as callback

• OneWay:
Send Message and forget

• Receiver may send result back to requester as a subsequent OneWay

message

• Examples:

• All of the above are supported by WCF

Communication-Driven Program
Structure

48

Communication Style

• Push Model

• Send information to a remote endpoint via a service call, perhaps via
a message:

void PostMessage(Message msg);

• Pull Model

• Retrieve information from a remote endpoint via a service call,
perhaps by a streaming download:

Stream downLoad(string filename);

Communication-Driven Program
Structure

49

Communication Style

• Pull Service and Caching

• A Software Repository could expose a WCF service that provides
information about its package contents including dependencies.

• That allows a client, for example, to pull from the Repository all files
in a package dependency list that are not already in its file cache.

• That makes sense only if the packages are versioned, so we can
distinguish between copies versus updates.

Communication-Driven Program
Structure

50

Thread & Event Driven Structure

Publish and Subscribe

Event Driven

Parallel Processing

Pipelines

Program Structure 51

Structure: Publish & Subscribe

• Structure:

• Many to many connection of Publishers and Subscribers.

• Each subscriber registers for notifications with a specific interface.

• Publishers send notifications to all enrolled subscribers when a
publisher event occurs.

• Publishers can support multiple events.

• Publishers don’t need to know anything about the subscriber.

Event-Driven Program Structure 52

Event-Driven Program Structure 53

Publisher
Event

Event

Publisher
Event

Event

Subscriber

Subscriber

Subscriber

Notify

Register for Notification

Threading Driven Structure

• Some program structures are a consequence of specific
threading models

• Event-driven and Single Threaded Apartment (STA)

• Parallel execution

• Pipelined execution

Thread and Event-Driven Program
Structure

54

Structure: Event-Driven

• Structure:

• Events from multiple concurrent sources generate messages which
are enqueued, and typically are processed by a single handling
thread.

• Messages are dispatched to event-handlers for processing.

• Example:

• Windows processing

Thread and Event-Driven Program
Structure

55

Windows Processing

Thread and Event-Driven Program
Structure

56

Active Window

keyboard

mouse

other

devices

Window Manager

messages filtered for
this window
posted by

operating system
thread

event

handler

function

Main thread in active window

blocks on call to getMessage until

a message arrives. Then it is

dispatched to an event handler

associated with that message

Raw Input Queue

Windows Message
Queue

Single Threaded Apartment

•Graphical User Interfaces all use the STA model.

• Possibly concurrent clients send messages to the GUI’s

message queue.

• All messages are retrieved by a single thread, the one that

created the window.

• Child threads, often used to execute tasks for the GUI, are

not allowed to directly interact with the window.

• Instead they must send or post messages to the window’s

message queue.

• This is often done with Form.Invoke or Dispatcher.Invoke.

Thread and Event-Driven Program
Structure

57

Parallel Execution

• Structure:

• Often concurrent programs provide enqueued task requests.

• Threads, perhaps from a thread pool, are dispatched to handle each
task.

• Tasks must be independent in order to fully realize the benefits of
concurrency.

• Example:

• Concurrent execution of dependency analysis tasks.

Thread-Driven Program Structure 58

Thread-Driven Program Structure 59

filespecs

Type Analysis

Type Analysis

Type Analysis

Type Analysis

Thread with filespec
Partial TypeTable

Merge Type

Tables

Partial TypeTable

Filespecs

And

Type Table

Dep, Relation

Analysis

Dep, Relation

Analysis

Dep, Relation

Analysis

Dep, Relation

Analysis

Thread with filespec

and

Type Table

Partial Results

Merge Results

Start Pass #2

Start Pass #1

Scheme for Parallel Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Thread Safe

Blocking Queue

Pipeline Execution

• Structure:

• Composed of cells.

• Each cell has a message queue and a child thread that processes
messages.

• Result messages may be sent on to another cell.

• Each cell type is defined by the way it overrides a virtual message
processing function.

• Example:

• Project #4, CSE687 – OOD, Spring 2010

Thread-Driven Program Structure 60

Thread-Driven Program Structure 61

Thread-Driven Program Structure 62

Pipe-lined Cell Communicators
• Document Vault (Project #4 – Fall 2013)

• Uses pipe-lined cells as communicators

• Mediator (dispatcher) controls routing of messages

• Each cell has capability to send and receive messages

• Makes very flexible configuration of client and server capabilities

Thread and Event-Driven Program
Structure

63

Thread and Event-Driven Program
Structure

64

DocumentVault

VaultClient

Client-
EchoCommunicator

Sender

Receiver VaultDispatcher

EchoCommunicator

QueryCommunicator

NavigationCommunicator

Project #4 Help – Object Diagram

Receiver

Sender

Main

Enterprise Computing

Federations

Collaboration Systems

Program Structure 65

Enterprise Computing

• Large Enterprise Applications are usually constructed as a
federation of lower level systems and subsystems.

• The federation is glued together with network based middleware, or
more commonly now, with web services.

• Example: PeopleSoft, used by S.U.

• Payroll and accounting

• Academic planning and record keeping

• Employee services

• A variety of web applications, like mySlice.

Enterprise Program Structure 66

Enterprise App: Project Center
• Federation of tools supporting Software Development

• Open source tools with integrating wrappers:

• CVS – configuration managment

• Nant – sofware builds

• Nunit – software testing

• Newly developed and legacy tools:

• Bug tracker, change tracker, project scheduler

• http://www.ecs.syr.edu/faculty/fawcett/
handouts/webpages/ProjectCenter.htm

Enterprise Program Structure 67

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/ProjectCenter.htm

Enterprise Program Structure 68

Project Center

ASP UIF

Project Center

WinForm UIF

Config Mgmt

CVS

RCS

Build

NAnt

Test

NUnit

Bug Tracker

Data Manager

Change Log

Project Scheduler

Project Center Packages

A viable configuration

Web Service

Communications

Federation Structure

• Federated Systems often are based on one of two design
patterns:

• Façade provides an integrating interface that consolidates a, possibly
large, set of system interfaces into a single application interface in an
attempt to make the system easier to use than working directly with
its individual parts.

• Mediator serves as a communication hub so that all the various
subsystems need know only one interface, that of the mediator.

Enterprise Program Structure 69

Collaboration System

▪System that focuses on sharing of processes and products
among peers with a common set of goals.
 Primary focus is organizing and maintaining some complex, usually

evolving, state:
 Software development baseline

 Set of work plans and schedules

 Documentation and model of obligations

 Communication of events

▪Example:
 Collab – CSE784, Fall 2007,

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CSer
v.htm

Enterprise Program Structure 70

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

Enterprise Program Structure 71

Other System Structures

Agents

Cloud Computing

Program Structure 72

Agent-Based

▪System uses Software Agents
 Semi-autonomous, mobile, task oriented software entities. Crawl

web, or network, or data structure

 May be scheduled

 Provide scriptable user specific services
 Collect information from a large set of data

 Perform analyses on changing baseline and report

 Conduct specific tests

 Make narrowly specified modifications to baseline

▪Example:
 CSE681 Project #5, summer 2009,

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects
/Pr5Su09.doc

Program Structure 73

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/Projects/Pr5Su09.doc

Master’s Thesis Research Examples
• The following are all based on Software Matrix structure –

Autonomous cells often used with mediator

• Software Matrix – Gosh, 2004

• Self Healing Systems – Anirudha, 2005

• Cross Platform Development – Appadurai, 2007

• Model-Driven Development – Patel, 2007

• http://www.ecs.syr.edu/faculty/fawcett/handouts/webpage
s/research.htm

Program Structure 74

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/research.htm

Other Structures

• TeraScale computing:

• Term defined by Intel to describe parallel execution on a many core
processor.

• Expectations are chips with scores of processors

• Cloud Computing

• Term adopted by many to describe remote execution and storage of
applications. The cloud provides a stable endpoint that may map
onto any one of a large set of computing resources.

• Example:

• Microsoft’s Azure platform

• Amazon Web Services

• Google Cloud

Program Structure 75

Other Structures we won’t discuss

• GPU computing

• Neural Networks

• Baysian Networks

• Deep Learning Networks

• Adversarial Networks

Program Structure 76

SMA Projects - 2015
• Project #2 – Fall 2015

• NoSql Database

• Key/Value store

• Provides cloning, persistence, querying, views

• Project #4 – Fall 2015

• Client-Server

• Focus on NoSqlDb performance testing

• May have multiple concurrent clients

• Both client and server may use DLLs for significant processing

• Project #5 – Fall 2015

• Federation of clients and servers

• Focuses on data service layer

• May have a dedicated virtual server with child services on each of the Federation servers

Program Structure 77

SMA Projects – Before 2015
• Project #2 – Fall 2013

• Cooperating monolithic processes

• Composite Text analyzer

• Metadata generator

• Project #4 – Fall 2014

• Client-Server

• May have multiple concurrent clients

• Both client and server use DLLs for significant processing

• Project #5 – Fall 2013

• Federation of clients and servers

• Focuses on Software Repository server

• May wish to use virtual servers

Program Structure 78

Virtual Server

• Clonable Server

• Create an instance of some running server on my desktop

• Clone some part of it’s data store

• Examples – Originals hosted by development project

• Repository – holds my team’s code resources

• TestHarness – used to test locally before checking in to Project

• Collab – holds my team’s work plans, status information

• Provides whiteboard with webcam and document views to collaborate with
remote team.

• Clients – Enables access and use of the other parts

Program Structure 79

The End

