
Project Center Use Cases

Jim Fawcett
Originally prepared for

CSE784 – Software Studio, Fall 2004

2

Project Center

•Project Center was a project assigned to another
course, CSE784 – Software Studio, but these slides
are also relevant to our projects #1 and #4.

•Project Center is a Software Development
Collaboration System, built from a number of open-
source projects with code wrappers to enable them
to communicate and collaborate effectively.

3

Project Center

ASP UIF

Project Center

WinForm UIF

Config Mgmt

CVS

RCS

Build

NAnt

Test

NUnit

Bug Tracker

Data Manager

Change Log

Project Scheduler

Web Service

Communications

4

Project Center Packages

Developer’s Daily Use

• Look at Project Center schedule, notices pages, alerts

• Get today’s work from Project Center:

• Get latest source of my code from CVS including NAnt build script

• Get latest build of other team’s code on which my code depends

• Make modifications or additions to my code

• Build my source, incorporating libraries on which my code depends, using
NAnt

• Run NUnit on my source and iterate, recording and working off bugs.

• Commit changes to CVS. That automatically results in change log entry.
Any components frozen cannot be committed to CVS.

• Send libraries of my latest code that others need to Project Center via
CVS

• Project Center Tools Used:

• CVS, NAnt, NUnit, Schedule, Change Log, Bug Tracker

5

Developer at Customer’s Site

• Walk customer through requirements issues, demo part of code, record
customer issues in P.C. from customer site.

• Login to P.C. via browser

• View Requirements Database

• Open CVS web interface from browser

• Extract demos from CVS and run at customer’s site

• Can modify and rebuild on-site if developer takes laptop with
P.C. installed.

• Walk through bug reports and change logs to discuss progress

• Project Center Tools Used:

• CVS, Requirements Database, Bug Reports, Change Log, all via Asp –
possibly NAnt and NUnit run on laptop.

6

Use of Project Center for Qualification

• All Qualification builds – typically four or five – ready to go in CVS with
NAnt scripts to rebuild should the customer want to peek at internals.

• Usually extract just executables

• But may rebuild any of the test builds with single NAnt command

• NUnit set up to run each of the Qualification Tests, showing, by default,
only what is necessary for qualification.

• Each test proceedure captured in help module

• Requirements database synchronized to qual test showing B-Spec
requirement for this test and A-Spec requirements it maps to.

• Project Center Tools Used:

• Requirements Database, CVS, NAnt, NUnit, Help

7

Customer’s use of Project Center for Maintenance

• We deliver Project Center along with product

• CVS, NAnt, NUnit all set to run regression tests on delivered product

• Project Center help has inserted module that documents product code –
a supplement to delivered documents

• Customer can now immediately do modifications and builds without
studying the product packaging for weeks.

• Project Center Tools Used:

• CVS, NAnt, NUnit, Help

8

Manager’s use of Project Center
• Review status of builds and tests through Schedule-based status reports. What

is important here is clarity of the information tranfer, not having a pretty or
fancy calendar. You are not asked to reinvent Outlook or Microsoft Project
Manager.

• Schedule says Display team has scheduled integration build to integrate with
Data Editing team.

• Schedule shows that Display team has not installed the required build the day
before integration.

• Checks Quality Assurance report for last display build and reviews (from CVS).

• Checks bug tracker reports

• Checks to make sure that the notification for scheduled integration has been
posted (a month ago).

• Sends notice to Display team leader that there will be a meeting in half-hour in
Manager’s office.

• After meeting manager posts action items associated with that meeting,
assigned to the Display team leader.

• Note that much of this functionality is fairly close to that supplied with the
requirements database and other tools.

• Project Center Tools Used:

• Schedule, CVS, Bug Tracker, Schedule Alerts, Action Item Database (Bug Reporter
with a different name?).

9

Architect’s use of Project Center

• Reviews all interfaces held by CVS against the OCD.

• Reviews CVS holdings for implementation and test of each interface’s
implementations.

• Extracts a team’s source and NAnt build script, builds exectable and reviews
functionality by running NUnit.
• Each team is required to deliver test drivers with their libraries.

• Each obligation of the team’s code is either demonstrated or a message is
stubbed stating its current status.

• All of this runs under NUnit.

• Architect reviews Team’s view of their obligations using this process from the
beginning of development.
• Each team is asked to declare their assigned interfaces and provide a fully

stubbed implementation at the beginning. They then replace each stub as
the real code is developed.

• Each stub announces what it will be delivering.

• Project Center tools used:
• CVS, NAnt, NUnit, Requirements DataBase,

10

Quality Assurance use of Project Center

• QA member assigned to Display team extracts source from CVS,
including NAnt build script.

• Uses NUnit to run series of code standards conformance tests on source.

• Builds executable or library with test drivers, supplied by Display team.

• Notes warnings.

• Runs QA build and notes functionality supplied.

• Each team is required to supply NUnit tests that display what
works and have stub messages for what does not yet work.

• Writes QA report and stores in CVS, associated with the Display build.

• Project Center Tools Used:

• CVS, NAnt, NUnit with special QA tests

11

Some Observations about Design

• Most of the custom tools are minor variants of a single design

• Requirements Database

• Bug Tracker

• Change Log

• It would be extremely useful to have web service interfaces to add and
modify entries in any of the databases.

• Examples:

• When modified code is committed to CVS it would be simple to have Project
Center user interfaces insert the change record to Change Log using its service
interface.

• When Qual Testing it would be simple to synchronize NUnit test with display of B-
Spec requirement and A-Spec requirement in separate windows using web service
access to Requirements Database to search for requirement by number.

• Meetings and reviews could be scheduled using web service interface to
scheduler.

• It may also be useful to provide a command line interface for insertion and
modification of database entries. Will make our tools consistent with the
open-source tools which all have command line interfaces.

12

Observations about Design

• Should designate Project Center Server

• Users have Project Center WinForm Interfaces on their client machines.

• Users can access most of the Project Center functionality through a
browser, viewing Asp pages from Server.

• All persistent data resides on Project Center server

• CVS / RCS code and document storage

• Should support private and public storage for each team

• NAnt build scripts (in CVS)

• Requirements

• Bug Reports, Change Logs

• Schedule and Tracking information

• Tools may reside on client or server. Architect will choose with help
of team leaders.

13

Prototyping

• The best way to decide how to glue all this together is to use the open-
source tools before committing to the Project Center structure.

• Suggest we download all of them and use them with a couple of
small example projects, perhaps CSE784, Project #1 for this year.

• Since the custom tools are entirely under our control they can fit into
the same structure needed for CVS, NAnt, and NUnit.

14

Distributing Work Load across Teams

• Database and Security:

• Designs queries for all accesses to any of the databases, providing
interfaces with insertion, update, and extracton

• Open-Source Tools Team:

• Prototype use of Open-Source tools with Project #1

• Responsible for help subsystem design and implementation

• Provides help contents for Open-Source tools

• Communication Team:

• Provides web service message-passing for custom tools

• Provides web service message-passing wrapper for open-source
tools.

• All open-source tools have command line interfaces so this should be
straight-forward.

• Tutorial links – later slide - indicate how command line interfaces
work.

15

Distributing Work Load across Teams

• Scheduling and Tracking Team
• Design and Implement Scheduler, Requirements database, Bug Tracker,

Change Log
• Design and Implement support for inserting new tools.

• Winform Interface Team
• Will have plenty of work with interface.

• Main problem is getting early access to code to call.

• Asp Interface Team

• Plenty of work with interface pages
• Same problem as Winform team

• Test Team – plenty of work already

• To get a quick start, User Interface teams could work out detailed use cases

• Then start hooking up open-source tools using communication stub
• Comm stub is just post-message, get-message interfaces used in the local

process as a stand-in for commlink to another machine until that
becomes available.

16

Derived Requirements

•User authentication

• Interoperation between tools

• Bug Tracker cites CVS entries

• CVS writes to Change Log

• Project Scheduler reads CVS and/or Change Log, NUnit
log.

17

Open-Source Tool Tutorials

• Tutorial Links

• CVS: http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/

• RCS – used by CVS:
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/

• NAnt: http://nant.sourceforge.net/help/index.html

• NUnit: http://www.nunit.org/getStarted.html

• Notes:

• You will find, looking at these links, that all these open-source tools provide
command line interfaces.

• That means that accessing them through a web service interface should be
straight-forward.

18

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/
http://nant.sourceforge.net/help/index.html
http://www.nunit.org/getStarted.html

