
Class Hierarchy

Jim Fawcett

August 2019

1

The Object Model

• Abstraction
• Application analysis: class or object model extracts

the essential features of a real class or object.
• Software design: public interface supports simple

logical model. Implementation complexity hidden
from client view.

• Modularity
• Application analysis: objects provide a more

expressive and fine-grained structuring capability
than decomposition by processing activity alone.

• Software design: objects are information clusters
which can be declared as often and wherever
needed.

• Encapsulation
• classes build “firewalls” around objects, forcing all

access through public interfaces, preventing access
to private implementation.

• Objects intercept errors before they propagate
outward throughout system

• Hierarchy
• Form aggregations by class compositions, e.g., one

class uses objects of another as data elements.
Supports “part-of” semantic relationship between
contained and containing objects.

• Define subclasses of objects through inheritance
from base class. Supports an “is-a” semantic
relationship between derived classes and base class.

2Hierarchy

Composition

Compositions are special associations which model a
“part-of” or “contained” semantic relationship.

Class X {
// public declarations here
private:

Y y;
Z z;

};

In this diagram class X contains objects of classes Y and Z.
Classes Y and Z are part-of class X.

Composition is transitive. That is, if class A contains B and
class B contains C, then A also contains C.

3

class X class Y

class Z

Hierarchy

Aggregation

Aggregations are special associations which model a weak
“part-of” or “contained” semantic relationship.

Class X {

// public declarations here

private:

Y* pY; // created in member function

Z* pZ; // with new only if needed.

};

In this diagram class X holds references to objects of
classes Y and Z. Those instances may be part-of class X.

Hierarchy 4

class X class Y

class Z

Hierarchy via Composition

• An object of one class may be used as a data element
of another.

• This is called composition. Member objects are used to
implement a “part of” relationship.

• The containing class has no special access to contained
object’s private data unless it is made a friend. But an
object of the containing class can pass initialization
data to the contained object during construction.

5

public interface functions

private functions

private dataprivate data

private functions

Hierarchy

Composition – “part of”

• Incorporating an object inside another by making the
contained object a private or protected data member
of the containing class creates a “part-of” relationship,
called a composition.

• Containing class has no special privileges regarding
access to contained objects internals. It has access
only to public interfaces of contained objects, just like
any other client.

• Since the contained object lies in the private or
protected parts of the containing object, clients can not
call its functions and do not see its functionality, except
as manifested by the containing object’s behaviors -
that is - the contained object helps to implement the
outer object’s functionality.

• The “part-of” relationship can be made explicit by
providing a member function which returns a reference
to the contained part. In this way, clients can get direct
access to the public interface of the part.

• “Part-of” relationships can also be implemented by
private derivations. The semantics of a private deri-
vation are the same as aggregation except that the
derived class now has access to the base class’s
protected (but not private) members.

6Hierarchy

Demonstration Programs

• A series of simple demonstration programs are
included in Appendix I for composition, and Appendix II
for inheritance.

• The demos don’t do much of anything useful, but they
are all designed to illustrate points about the way C++
does its job.

• Each demo has a prologue which gives a very brief
description of what the demo is about. Comments in
the code are intended to draw your attention to
specific details.

• Output for each demo is included at the end of each
program, along with comments about how you might
interpret the code and its output.

• One of the goals of these demos is to illustrate
operations that occur under different design strategies.
Some of the things that happen may surprise you.

• It is very important that you understand all the things
that happen in a C++ implementation. A lot of things
happen silently unless you specifically instrument your
code to see them. That is exactly what these demo
programs do.

7Hierarchy

Inheritance

Inheritance models an “is-a” semantic relationship. Here
classes Y and Z inherit from class X.

class Y : public X { … }

class Z : public X { … }

That means that class Y “is-a” class X and the same must
be true for class Z. The “is-a” relationship is always a
specialization. That is, both classes Y and Z must have all
attributes and behaviors of class X, but may also extend
the attributes and extend and modify the behaviors of
class X.

8

class X

class Y class Z

Hierarchy

Hierarchy via Inheritance

• Inheritance enables the derivation of a new class
with all the existing methods and data members of
its base class.

• Derived class functions have access to protected data
and functions of the base class.

• The derived class “is a” base class object with addi-
tional capabilities, creating a new specialized object.

9

protected data
protected functions

public interface functions

protected data

base class

derived class

Hierarchy

Derived Class Access Privileges

public

members

protected

members

private

members

public

derivation

models is-a
relationship

client sees all base and
derived class behaviors

public members
of base class
become public
members of
derived class

 (stay the same)

protected mem-
bers of base class
become protected
members of
derived class

 (stay the same)

private members
of base class are
not accessible to
derived class

protected

derivation

models uses
relationship

client sees only derived
behaviors

public members
of base class
become
protected
members of
derived class

protected mem-
bers of base class
become protected
members of
derived class

 (stay the same)

private members
of base class are
not accessible to
derived class

private

derivation

models uses
relationship

client sees only derived
behaviors

public members
of base class
become private
members of
derived class

protected
members of base
class become
private members
of derived lass

private members
of base class are
not accessible to
derived class

10Hierarchy

Inheritance Example

• The inheritance diagram on the next page represents an
architecture for a graphics editor. The display list refers to
graphics objects, which because of the “is-a” relation-ship,
can be any of the derived objects. Presumably a client of
the display list creates graphic objects based on user inputs
and attaches them to the list. The display list and its clients
do not need to know about the types of each of the
objects. They simply need to know how to send messages
defined by the graphics object base class.

• The base class graphicsObject provides a protocol for
clients like the display list to use, e.g., draw(), erase(),
move(), ... Clients do not need to know any of the details
that distinguish one of the derived class objects from
another.

• The absence of a diamond shape on the list class indi-cates
that the list does not manage the creation or des-truction
of the graphics objects it refers to.

• This example illustrates why the inheritance relationship is
considered to represent an “or” relationship between
objects on the same level. Display list members are either
lines or circles or polygons or ...

11Hierarchy

Graphics Editor Classes

12

graphics

object

line circle polygon

display

list

Hierarchy

Public Inheritance – “is-a”

• Syntax: class derived : public base {...};

• Public derivation makes all of the base class functionality
available to derived class objects. This has two very
important consequences:
• clients interpret the derived object as a base class object with either

specialized, or new capabilities, or both.

• a derived class object, since it is a base class object, can be used
anywhere a base class object can be used. For example, a function
typed to accept a base class pointer, or reference, will accept a derived
class pointer, or reference in its place.

• New capabilities occur when the derived class adds new
member functions or new state members which give the
derived object richer state and functional behaviors.

• Specialized capabilities occur when the derived class
modifies a base class virtual function.
• The base class object and derived class object respond to the same

message, but in somewhat different ways, determined by the
implementations of the virtual function in each class.

• Because the modified function is qualified in the base class by the
keyword virtual, which function is called is determined by the type of
object invoking it.

13Hierarchy

Private Inheritance – “part of”

• Syntax: class derived : private base { ... };

• Private derivation hides all of the base class interface from
clients. By default none of the base class member
functions are accessible to derived class clients.

• The base class object is “part of” the derived class. All of its
attributes are attributes of the derived class.
Public and protected member functions are available to derived
class functions to support their implementation.

• Clients of the derived class see base class functionality only as
manifested through derived class interface operations.

• From the client’s point of view private derivation creates an
aggregation.

• The only difference is that, using private inheritance, the derived
class has access to protected members of the base class.

• In private inheritance any class derived again from the derived
class has no more access privileges to the base than any other
client of the derived class.

14Hierarchy

Protected Inheritance – “part of”

• Syntax: class derived : protected base {...};

• Protected inheritance is just like private inheritance from
client’s perspective. Clients have no access to base class
functionality except through the derived class interface.

• Protected inheritance is just like public inheritance from
the derived class’s point of view. Derived class member
functions have access to all the base class public and
protected members. The derived class members can use a
derived class object anywhere a base class object is
expected.

• Protected inheritance, unlike private inheritance, passes
on to all subsequent protected derived classes access
privileges to the base public and protected members.

15Hierarchy

Initialization Sequences

•C++ provides constructors specifically to initialize
a newly created object so that its state will
assume some correct values.

• In the body of the constructor we can allocate
needed resources and assign values to data
members of the class.

•However, it is preferable to use an initialization
sequence:
• Initialization sequences are more efficient than void

construction and assignment.
• Use of an initialization sequence is the only way to chose

which constructor will be called for base classes and set
member reference values.

We will see in the demonstration code that this is
critically important.

16Hierarchy

Initialization Sequence Syntax

• An initialization sequence is part of the syntax of a
constructor definition:

class D : public B
{

// public interface
private:
ostream &_out;
int _size;
double *darray;

};

// This syntax assumes that D’s base B can
// be initialized with a std::string, e.g.,
// it has a constructor that takes a string
// as its only argument.

D::D(ostream &out, int size, std::string &s)
: B(s), // initialize base class
_out(out), _size(size),
darray(new double[size]) {}

17Hierarchy

Polymorphism

• Consider the display list example from the next page.
Objects on the list may be any of the types derived from
graphicsObject. The display list is said to contain a
heterogeneous collection of objects since any one of the
graphicsObject types can occur on the list in any order.

• The list manager needs to be able to apply one of several
specific operations, like draw() or hide(), to every member
of the list. However, draw() and hide() processing will be
different for each object.

• Languages which support object oriented design provide a
mechanism called polymorphism to handle this situation.
Each object determines for itself how to process draw() or
hide() messages.

• This powerful mechanism is implemented in C++ using
virtual functions. Each derived class redefines the base
class virtual draw() and hide() member functions in ways
appropriate for its class, using exactly the same signature
as in the base class.

• We say that the graphicsObject base class provides a
protocol for its derived classes by specifying names and
signatures of the polymorphic (virtual function)
operations.

18Hierarchy

Polymorphism (cont)

• When a virtual function is redefined in a derived class there are
multiple definitions for the same signature, one for each derived class
redefinition and often one for the base class as well. Which is called?

• Suppose that a base class member function, say

virtual void graphicsObj::draw() {...}

is redefined by each of the derived graphics objects. If myLine is an
instance of the line class, an invocation

myLine.draw()

will invoke the version defined by the line class.

• If, however, a display list object has a list of pointers to base class
graphicsObjects, the list can point to any derived object, line, circle, ...
and an invocation:

listPtr[i] → draw();

will call the draw function of the object pointed to, e.g. line, circle, ... ,
polygon.

19

graphicsObject

line circle polygon

display list

Hierarchy

Still More Polymorphism

• An invocation of a virtual function through an object
will call the function definition provided by the class
of the object.

• An invocation of a virtual function through a base
class pointer or reference to an object will call the
function definition provided by the class of the object
referred to.

• This process is called polymorphic dispatching. We
say that the display list object dispatches the virtual
function draw()

• Polymorphism places the responsibility for choosing
the implementation to call with the object, not with
the caller.

• Allowing different objects (which must be type
compatible) to respond to a common message with
behaviors suited to the object is a powerful design
mechanism. It allows the caller to be ignorant of all
the details associated with the differences between
objects an simply focus on their base protocol.

20Hierarchy

Double Dispatching

• It is possible to design in more than one level of dispatching.
Suppose that we need to support more than one
environment with our graphics editor. We might define the
class hierarchy:

• Suppose further that the draw function was designed to
accept a device object which provides all the device specific
details:

virtual void
graphicsObject::draw(displayDevice& dd);

• The invocation:

listPtr[i] → draw(dd)

will dispatch the draw function for the object pointed to and
will dispatch the device calls based on device reference dd.

21

displayDevice

VGA-display TARGA-display

Hierarchy

Abstract Base Class

• A base class like graphicsObject should probably never be
instantiated.

• This can be prevented by making graphicsObject an abstract
base class. We do that by defining at least one pure virtual
function in the class, e.g.:

class graphicsObject {
public:

virtual void draw() = 0;
- - -

};

• The draw() = 0 syntax tells the compiler that draw may not be
called by a client of this class. This in turn means that no
instance of the class can be created. It isn’t widely known that
a body may be defined for a pure virtual function, although we
usually don’t need to do that.

22

graphicsObject

line circle polygon

display list

Hierarchy

Abstract Base Class (cont)

• No instance of an abstract class can be created. To
attempt to do so is a compile time error.

• If a derived class does not redefine all pure virtual
functions in its base class it also is an abstract class.

• If all pure virtual functions are properly redefined in
the derived class, that is, with exactly the same
signatures as in the base class excluding the “= 0”
part, then instances of the derived class can be
created.

• Abstract base classes are called protocol classes
because they provide a protocol or communication
standard by which all derived classes must abide.

23Hierarchy

Finite State Machine Example

This example simulates an elevator which visits only two
floors. When on the first floor the elevator is stationary
until the up button is pressed. It then travels toward the
second floor. The arrival event brings the elevator to the
second floor. It remains stationary on the second floor
until the down button is pressed. It then travels toward
the first floor. An arrival event brings the elevator back to
the first floor.

This event sequence is described by the state transition
diagram shown on the next page. The elevator simulation
consists of implementing the state mechanism with one
derived class for each state and a global event processing
loop.

The base class defines, as member functions, each of the
events the system must respond. The base class members
all return pointers to themselves without taking any other
action. This essentially defines null events.

Derived classes override any event which will cause a
transition out of that state by returning a pointer to the
next state. So, for example, StateOnFirstFloor over-rides
upButton to return a pointer to StateGoingUp. Here again,
we see polymorphic operation allowing each state object
to determine how it responds to the protocol established
by the ElevState base class.

24Hierarchy

FSM Elevator Example

Elevator States:

Event Loop:

Class Hierarchy:

25

OnFirstFloor GoingUp

OnSecondFloorGoingDown

UpButton

DownButton

ArrivedArrived

GetEvent

ProcessEvent

ElevState

StateOnFirstFloor

StateGoingUp

StateOnSecondFloor

StateGoingDown

UpButton()

DownButton()

Arrival()

Hierarchy

Members not Inherited

• When a class is publicly derived from a base class all of
the base class member functions are inherited along
with all the base class data members. However, there
are a few derived members which are not inherited:

• Constructors must be defined for derived class. They automatically
call a base class constructor as their first operation. Derived
constructors initialize the new data attributes defined by the
derived class and pass initializing values to the base class
constructors (see example code demInherit3.cpp).

• Destructor must also be defined for the derived class. It should
release resources allocated by the derived class. All base class
resources are released by the base class destructor which is
automatically called by the derived destructor as its last operation.

• Assignment operator must be defined for the derived class. An
assignment operator should explicitly invoke its base class
assignment operator to assign base class data attributes and then
assign any derived class data attributes.

• Under private inheritance none of the base class
operations are accessible (to a client) by default.
However, one or more member functions can be made
accessible by including in the derived class declaration
the expression:

base : baseMemberFunction

base is the name of the base class and
baseMemberFunction is the name of the base class
member function to be made accessible.

26Hierarchy

Default Members

• Since derived classes only inherit constructors,
destructors, and assignment operators for the base
part, these members are created by the compiler if
needed.

• if no constructors are declared by a class, the compiler will
define void constructor which is used to build arrays of
objects of that class. It does member-wise void
constructions. If any other constructor is declared for the
class a void constructor will not be defined by the compiler.
In this case, declaring an array of objects is a compile time
error.

• if no copy constructor is declared by a class the compiler
will define one which does member-wise assignment of
data attributes from the copied object to the constructed
object. This is used for all call and return by value
operations.

• if no destructor is declared the compiler will define one
which performs member-wise destruction of each of the
class data attributes.

• if no copy assignment operator is declared by a class the
compiler will define one, if needed, which does member-
wise assignment of the class’s data attributes.

•Note that these default operations may not be what is
needed by the class. For example, if a class contains a
pointer data element, default copying or assignment
will result in copying the pointer, not what is pointed
to. This is termed a shallow copy. Usually what is
wanted is a deep copy. That is, allocating new
memory for the pointed to object, copying the object
into new memory, and assigning the address of the
new object to the pointer data element.

27Hierarchy

Default Moves

• If no copy constructor, copy assignment, and destructor
are declared, then move constructor and move
assignment will be implemented by the compiler.

• The defaults do move operations on the class’s bases and
data members.

• As on the previous slide this may not be what you want.

• The designer of every class must decide whether to
accept the default members, or define those members,
or disallow them (with the =delete) syntax.

28Hierarchy

Multiple Inheritance

A derived class may have more than one base class. In this case
we say that the design structure uses multiple inheritance.

The derived “is-a” base 1 and “is-a” base 2. Multiple inheritance
is appropriate when the two base classes are orthogonal, e.g.,
have no common attributes or behaviors, and the derived class is
logically the union of the two base classes.

The next page shows an example of multiple inheritance taken
from the iostream module. The class iostream uses multiple
inheritance to help provide its behaviors.

29

base class 1 base class 2

derived class

Hierarchy

iostream Hierarchy

30

ios

istream ostream

istream_with_assign istrstream ifstream ostream_with_assignostrstreamofstreamiostream

fstream strstream stdiostream

streambuf

stdiobuffilebuf strstreambuf

Stream Library

Class Relationships

Hierarchy

Multiple Inheritance (cont)

• A derived class D may inherit from more than one base class:

class D : public A, public B, ... { ... };

• A, B, ... is not an ordered list. It is a set. The class D represents
the union of the members of classes A, B, and C.

• If a member mf() of A has the same signature as a member of
B, then there is an ambiguity which the compiler will not
resolve. Sending an mf() message to a derived object will
result in compile time failure unless it is explicitly made
unambiguous:

d.A::mf();

• A constructor for D will automatically call constructors for
base objects, in the order cited in D’s declaration.

• D’s constructor may explicitly initialize data members of each
of the base classes by naming parameterized base
constructors in an initialization list:

D(Ta a, Tb b, Tc C) : A(a), B(b), C(c) {...}

31Hierarchy

Multiple Inheritance Mixins

• Suppose that we wish to design a string class with two specific
types of applications in mind.
• Most applications require minimal character space for each string, If

we assign a short string to an existing long string the assignment
operator would return left hand’s character space and allocate a new,
smaller, space.

• For tokenizing it is critically important that string operations like
assignment and copying be as fast as possible. In this case we might
decide to reallocate space only if new string length exceeded existing
allocation. If smaller simply use front part of existing space. This
may eliminate many calls to a slow memory manager.

• We can accomplish these opposing objectives using multiple
inheritance in a “mixin” strategy.

• We derive a string class from a base string representation class
and one of the allocators. The chosen allocator replaces
pointer to string’s character space.

class str : public str_rep, private

fastAlloc { ... };

Here we mixin the string representation and allocation
capabilities using multiple inheritance.

32

allocator

smallAllocator fastAllocator

Hierarchy

Dreaded Diamonds

•Suppose we have the situation:

class B : public A { ... };
class C : public A { ... };
class D : public B, public C { ... };

•Since D contains the attributes of all its base
classes, all of the attributes of A are repeated
twice in D.

33

A

B C

D

Hierarchy

Dreaded Diamonds

•Suppose we have the situation:

class B : public A { ... };
class C : public A { ... };
class D : public B, public C { ... };

•Since D contains the attributes of all its base
classes, all of the attributes of A are repeated
twice in D.

34

A A

CB

D

Hierarchy

Construction Sequence

• Base class constructors are called implicitly by derived class
constructors. The B and C constructors are called by D’s
constructor.

• Who calls A’s constructor?

• B will call its A constructor. C will call its A constructor.

35

A A

CB

D

Hierarchy

Virtual Base Classes

•We can avoid duplication of A’s members by
making it a virtual base class:

class B : virtual public A { ... };
class C : virtual public A { ... };
class D : public B, public C { ... };

•Now an object of the D class contains only one
set of base class A’s attributes.

36

CB

D

A

Hierarchy

Construction Sequence

•We can avoid duplication of A’s members by
making it a virtual base class:

class B : virtual public A { ... };
class C : virtual public A { ... };
class D : public B, public C { ... };

•Who calls A’s constructor? The constructor for
B? The constructor for C? C++ resolves the
ambiguity by requiring the most derived class to
invoke a virtual base class’s constructor. So D’s
constructor will construct B and C and A. Note
that that sequence is different than for any
derivation chain with non-virtual base.

37

CB

D

A

Hierarchy

Initializing Virtual Base Classes

•A constructor of a derived class may explicitly
initialize its base(s) with the syntax:

B(Ta a) : A(a) { ... }

•A virtual base class must be initialized by the
most derived constructor, so, for example:

class B : virtual public A { ... };
class C : virtual public A { ... };
class D : public B, public C { ... };

A will be initialized by:

D(Ta a, Tb b, Tc c)
: A(a), B(b), C(c) { ... }

If A were not virtual B’s copy would be initialized
by B and C’s copy would be initialized by C.

•Note that changing a base class from non-virtual
to virtual can break correct code.

38Hierarchy

End of Presentation

