
Consuming Rust bite by byte

Bite 1 - Data

Jim Fawcett

https://JimFawcett.github.io

Bite #2

https://jimfawcett.github.io/Resources/ConsumingRustBite2.pdf

Bite #1 – Rust Data

• Our goal is to understand the terms:

• Bind – associate an identifier with a value

• Copy – bind to a copy of a Copy type

• Move – transfer ownership of a value

• Clone – make a clone of a !Copy type

• But first, a message from our sponsor

Why Rust?

• Memory and Data Race safety
• Enforced data ownership rules insure Memory and Data Race safety.

• Error Handling
• Any function that can fail returns a result indicating success or failure. Code

has to handle errors in well defined ways.

• Performance
• Rust compiles to native code and does not need garbage collection, so it is as

fast as C and C++.

• Simple Value Behavior
• Rust supports value behavior without the need to define copy and move

constructors and assignment operators.

• Extraordinarily effective tool chain

What is this?

• This is the first in a series of bites - brief presentations - about the
Rust programming language:

• Each presentation will be brief – a few slides

• Each will focus on one part of the Rust language

• The series will build in bite sized chunks: easy to grasp, quick to consume.

• Now, on with the show!

Bite #1 – Binding to a value

• Bind – associate an identifier with a memory location
• Every identifier has a type:

• let k : i32 = 42;

• let signifies a binding is being created

• i32 is the type of a 32 bit integer

• 42 is a value placed in the memory location associated with k

• A type is a set of legal values with associated operations.

• Type inference:
• let k = 42;

• This binding is legal and has the same meaning as the previous binding.

• In lieu of other information, Rust will assign the type i32 to any unadorned integral value
that can be correctly written to a 32 bit location.

Bite #1 – Binding to an identifier

• Binding to an identifier has several forms:
• let j:i32 = k; // makes copy because k is blittable

• let l = &k; // l makes reference to k, called a borrow

• let s:String = “a string”.into_string();

• let t = s; // moves s into t, e.g., transfers ownership
// because s is not blittable

• Blittable
• A blittable type occupies a single contiguous block of memory, and so
can be correctly copied to a new location with a single memcpy.

• Non-blittable types occupy more than one memory location, usually one
contiguous block on the stack and one or more blocks on the heap.

• Non-blittable types cannot be successfully copied with a single memcpy operation.

Bite #1 - Ownership

• Ownership in Rust is an interesting concept.

• In Rust, data has one, and only one owner.

• Ownership can be borrowed or transferred.

• There are rules about ownership that we discuss in Bite #3.

• Following Rust’s ownership rules makes Rust code memory-safe.
• Enforced by rustc, the Rust compiler

• The rules also make Rust code free from data races
• Rust will not compile code that is shared between threads unless it is guarded by a lock.

• That, combined with single-ownership, ensures ordered access to shared data, one
thread at a time.

Copies, Moves

• Copy
• Data resides in one contiguous block of memory (blittable)
• let x = 3.5;

• let y = x;

• y gets copy of x’s value ==> two separate locations holding the same value.

• Copy binding creates new owner of new data.

• Move
• Data resides in two or more blocks, usually one in stack, one in heap.
• let s = String::from(“a string”);

• let t = s;

• s value moved to t, s becomes invalid

• Move binding transfers ownership

8

Bite #1 – Copy and Borrow

• A copy operation can occur only for values that satisfy the Copy trait.
• A trait is, like an interface, a specification of a contract. Copy contract

requires Rust code, when binding, to copy data with that trait.

• To satisfy Copy, the data must be blittable.

• Copies happen implicitly when an identifier is bound to a Copy type.
• let i = 3; let j = i; // copy

• Borrows - binding references to other identifiers
• A reference is a safe pointer to the bound memory
location.
• let r = &i;

Bite #1 – Move and Clone

• A move transfers a Move type’s heap
resources to another instance of that type
• The string, s, shown in the top diagram is

moved to t with the statement:
• let t = s;

• Move transfers ownership of resources.

• A clone copies a Move type’s heap resources
to a new instance of that type.
• The string s, shown in the bottom diagram

is cloned with the statement:
• let t = s.clone();

• Clone operation copies resources to target.

Move

Clone

Exercises

1. Create an instance of a blittable type and show when it is copied.
• Can you prove that it was copied?

2. Create an instance of a non-blittable type and show when it is
moved.

• Can you prove that it was moved?

3. Repeat the second exercise but clone the non-blittable type before
moving it. Show that the clone is valid while the move source is not
valid.

Hint:
• Integral types, chars, and floating-point types are blittable

• Strings, Vecs, VecDeques, and Maps are non-blittable.

References

Link Description

ConsumingRustBite2 - UDB Undefined behavior – example from C++ code

Rust Story - Data Expanded discussion in Rust Story

https://jimfawcett.github.io/Resources/ConsumingRustBite2.pdf
https://jimfawcett.github.io/RustStory_Data.html#lifecycle

That’s all until Bite #2

Bite #2 illustrates undefined behavior with C++ code, showing us why
we need Rust.

