Consuming Rust bite by byte

Bite 1 - Data

Jim Fawcett
https://JimFawcett.github.io

Bite #2

https://jimfawcett.github.io/Resources/ConsumingRustBite2.pdf

Bite #1 — Rust Data

* Qur goal is to understand the terms:

* Bind — associate an identifier with a value
Copy — bind to a copy of a Copy type
Move — transfer ownership of a value
Clone — make a clone of a ICopy type

* But first, a message from our sponsor

Why Rust?

* Memory and Data Race safety
* Enforced data ownership rules insure Memory and Data Race safety.

* Error Handling

* Any function that can fail returns a result indicating success or failure. Code
has to handle errors in well defined ways.

* Performance

* Rust compiles to native code and does not need garbage collection, so it is as
fast as C and C++.

e Simple Value Behavior

e Rust supports value behavior without the need to define copy and move
constructors and assignment operators.

* Extraordinarily effective tool chain

What is this?

* This is the first in a series of bites - brief presentations - about the
Rust programming language:

* Each presentation will be brief —a few slides

* Each will focus on one part of the Rust language
* The series will build in bite sized chunks: easy to grasp, quick to consume.

* Now, on with the show!

Bite #1 — Binding to a value

* Bind — associate an identifier with a memory location

* Every identifier has a type:
e let k : 132 = 42;
* |et signifies a binding is being created

132 isthe type of a 32 bit integer
* 42 is a value placed in the memory location associated with k

* Atype is a set of legal values with associated operations.

* Type inference:
« let k = 42;
* This binding is legal and has the same meaning as the previous binding.

* In lieu of other information, Rust will assign the type i32 to any unadorned integral value
that can be correctly written to a 32 bit location.

Bite #1 — Binding to an identifier

* Binding to an identifier has several forms:
 let j:i32 = k; // makes copy because k is blittable

e let 1 = &k; // 1 makes reference to k, called a borrow
« let s:String = “a string”.into_string();
e let t = s; // moves s into t, e.g., transfers ownership

// because s is not blittable

- Blittable
« A blittable type occupies a single contiguous block of memory, and so
can be correctly copied to a new location with a single memcpy.

* Non-blittable types occupy more than one memory location, usually one
contiguous block on the stack and one or more blocks on the heap.

* Non-blittable types cannot be successfully copied with a single memcpy operation.

Bite #1 - Ownership

* Ownership in Rust is an interesting concept.

In Rust, data has one, and only one owner.

Ownership can be borrowed or transferred.

There are rules about ownership that we discuss in Bite #3.

Following Rust’s ownership rules makes Rust code memory-safe.
* Enforced by rustc, the Rust compiler

* The rules also make Rust code free from data races
e Rust will not compile code that is shared between threads unless it is guarded by a lock.

* That, combined with single-ownership, ensures ordered access to shared data, one
thread at a time.

Copies, Moves

* Copy
» Data resides in one contiguous block of memory (blittable)
e let x = 3.5;
e let y = x;
» y gets copy of x’s value ==> two separate locations holding the same value.
e Copy binding creates new owner of new data.

* Move

* Data resides in two or more blocks, usually one in stack, one in heap.
let s = String::from(“a string”);

let t = s;

s value moved to t, s becomes invalid

Move binding transfers ownership

Bite #1 — Copy and Borrow

* A copy operation can occur only for values that satisfy the Copy trait.

* Atraitis, like an interface, a specification of a contract. Copy contract
requires Rust code, when binding, to copy data with that trait.

* To satisfy Copy, the data must be blittable.
» Copies happen implicitly when an identifier is bound to a Copy type.
« let i = 3; 1let j=1i; // copy
* Borrows - binding references to other identifiers

* A reference is a safe pointer to the bound memory
location.
e let r = &i;

1 — Move and Clone

Bite

A move transfers a Move type’s heap
resources to another instance of that type
* The string, s, shown in the top diagram is

moved to t with the statement:
e let t = s;
* Move transfers ownership of resources.

* Aclone copies a Move type’s heap resources
to a new instance of that type.
 The string s, shown in the bottom diagram

is cloned with the statement:
e let t = s.clone();

* Clone operation copies resources to target.

s:String
moved from
so invalid

t:String
NOW owns
character

resource

ptr

cap

ptr

len

Stack Memory

Move

Heap Memory

s:String
cloned so
still valid

t:String
now owns

copy of
character

resource

ptr

cap

ptr

P a string” |

‘ F cloned

len

cap

Stack Memory

Clone

Heap Memory

Exercises

1. Create an instance of a blittable type and show when it is copied.
e Can you prove that it was copied?

2. Create an instance of a non-blittable type and show when it is

moved.
e Can you prove that it was moved?

3. Repeat the second exercise but clone the non-blittable type before
moving it. Show that the clone is valid while the move source is not
valid.

Hint:
* Integral types, chars, and floating-point types are blittable
 Strings, Vecs, VecDeques, and Maps are non-blittable.

References

ConsumingRustBite2 - UDB Undefined behavior — example from C++ code

Rust Story - Data Expanded discussion in Rust Story

https://jimfawcett.github.io/Resources/ConsumingRustBite2.pdf
https://jimfawcett.github.io/RustStory_Data.html#lifecycle

That’s all until Bite #2

Bite #2 illustrates undefined behavior with C++ code, showing us why
we need Rust.

