
Asynchronous Systems
Jim Fawcett

CSE681 – Software Modeling & Analysis

Fall 2008

References
• Concurrent Programming in Java, Second Edition, Doug Lea, Addison-

Wesley 2000
• Several of the slides in this presentation closely follow the material in this book.

In some cases the slides simply paraphrase material presented there.

• Programming .Net, Jeff Prosise, Microsoft Press, 2002
• See Chapters 14 and 15.

• www.25hoursaday.com/CSharpVsJava.html#threads
• Nice discussion of the volatile keyword

http://www.25hoursaday.com/CSharpVsJava.html#threads

Agenda

• What is an asynchronous system?

• When should you use asynchronous methods?

• Operating system support – Demo code
• Asynchronous methods

• Asynchronous delegates

• Asynchronous callbacks

Synchronous - Definitions

• Orbital Satellites
• Stationary relative to the earth

• Neurobiology
• Mental processes that entrain to external stimuli as in epilepsy

• Communication Systems
• Information is contained in frames with constant frame rate

• Radio and Radar Detection
• Carrier is removed by an oscillator that locks onto the incoming carrier

frequency

• Software
• A function call that blocks the caller until finished

• A component that collects input by waiting for data from a single sender at
some point in the code, e.g., cin

Asynchronous Software

• Function call returns immediately without waiting for function
completion.

• One of the following happens after return:
• Caller needs no reply and ignores the callee.

• Caller must poll for completion status, e.g., keep checking

• Caller must provide a callback for the callee to use when finished

• Caller deposits a message in a queue for the callee to process at some later
time, without expecting or waiting for a reply.

• The callee may, but is not required to, deposit a reply in a queue owned by the caller.

• If a system is based on message passing, the callee can react to inputs from
an arbitrary number of sources, arriving in any order, at any time.

• Very flexible.

Synchronize (synonym – serialize)
• Just to be confusing, the word synchronize, pronounced and spelled very

like synchronous, means something entirely different.

• For software, synchronize means to control access to a resource shared
between threads so that only one thread at a time is allowed to use the
resource.

• The resource is locked by the thread and no other thread gets access, even if the
thread is blocked, suspended, or waiting to run, until the using thread releases
the lock.

• A lock may apply only to some specific code location or to an object accessed
anywhere in the code.

• A thread can lock a resource by using any of the following:
• C# lock, .Net Monitor, critical section, mutex, or event

• The following resources are often shared between threads:
• Queues, I/O streams, files, and windows

• Static members of a class

• C and C++ can share global variables

What is an Asynchronous System?

• Two parties communicate without being bound to a specific time.
• Email is a classic example.

• Message is sent, can be read at any later time.

• No constraints on when message is sent.

• No constraints on when message is read, as long as it is later than sending time.

• Requires four things:
• Sender

• Receiver

• Place to put messages

• Transmission facility that does not require any action on part of sender or receiver, other
than to send and collect message.

FIFO Queues

• First In First Out queues are usually constructed with linked lists.
• Objects enter the queue by getting linked to one end.

• Objects leave the queue by getting unlinked from the other end.

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

Node

pointing to

queue entry

enqueued

object

Important Property of Queues
• Queues decouple a receiver from its sender.

• Sender and receiver can be on different threads of a given process.

• Receiver does not need to process an object when it is handed off by the sender.

• Queues can eliminate timing mismatches between sender and receiver.
• One might be synchronized in nature, requiring message passing at fixed time intervals – a

radar signal processor for example.

• The other might be free-running, handling messages with different service times, preventing
synchronized operation.

• Queues can support reliable communication over unreliable media, simply
holding onto messages it can’t send until the transmission link becomes
available.

Message Passing Between Threads

Parent Thread

Child Thread

Sending Message to Child

Receiving Message from

Parent

Shared Queue

Send and Receive Queues

• Essentially, a SendQ lets:
• Sender thread create a list of requests.

• Communication thread remember requests it has not processed yet.

• A RecvQ lets:
• Remote process return a result independently of the receiver’s main thread’s

readiness to accept it.

• Valuable remote resource need not block waiting for a hand-off to receiver.

• Both queues allow the client’s main thread to service other
important tasks as well as interact with the remote resource.

Send and Receive Queues
Process #1 - Main Thread

Socket Thread

socket

Process #2 - Main Thread

Socket Thread

socket
Interprocess

Communication
SendQ RecvQ

SendQ is used to hold messages
in the event that communication
with the remote receiver fails.

Messages are held until
communication is re-established.

RecvQ is used to quickly remove
messages from the socket
connection so that the socket
buffer never fills (that would block
the sender).

What is an Asynchronous System?

• So, is every message-passing system asynchronous? No.
• Exchange between a browser and web server is message-based, usually employing Get

or Post HTTP messages.

• That exchange is synchronous. The browser doesn’t return until a page is delivered –
either the page requested or an error page.

• Is every asynchronous system message-based? No.
• .Net delegates and remoting proxies support asynchronous operations via BeginInvoke

and EndInvoke procedure calls.

• Examples of asynchronous systems:
• Windows operating system supports the ability to react to many kinds of events using

each window’s message loop.

• Socket Listeners improve their availability by spawning client handler threads.

• All the radar systems I worked on use asynchronous messaging between layers.

• Email, Project #5, many enterprise systems, …

Why Use Asynchronous Systems?
Adapted from Concurrent Programming in Java, Doug Lea, Addison-Wesley, 1997

• System needs to be reactive

• System must have high availability

• Services must be controllable

• System needs to send asynchronous messages

• System may have to handle bursty events

Why use Asynchronous Systems?

• The system needs to be
reactive.

• It does more than one
thing at a time, each
activity reacting in
response to some
input.

• Each event results in a
message in windows
queue. Reponse
happens later, if at all.

WinMain

implements

message loop

windows

implements

message queue

and

message

routing

provides

win32 API application

functionality

windows

controls

WinProc

implements

message

handling

for

application

messages

Classic Windows Processing

messages

register windows

"class"

create window

show window

update window

get message

dispatch message

process

windows

messages

application function calls

win32 API calls

user events

via

keyboard or mouse

messages

Windows, Queues, and Messages

• Graphical User Interfaces are the stereotype of message-passing systems using
queues.

Active Window

keyboard

mouse

other

devices

Window Manager

event

handler

function

Raw Input Queue
Main thread in window process

blocks on call to GetMessage

until a message arrives. Then it

is dispatched to an event

handler associated with that

message.

Messages, filtered for this window, are

posted to the window’s message

queue by an operating system thread.

Windows Messaging

• With the architecture shown on the previous slide a window can
respond to any of many different inputs, including:

• User inputs from mouse movement, mouse buttons, and keyboard

• System events, e.g., being uncovered by an obscuring window, and so
needing to repaint its region of the screen

• Message generated from within the program running in that process, based
on strategies put in place by the designer.

• Even if several messages arrive before a predecessor is processed,
they won’t be lost.

Why use Asynchronous Systems?

• The system must have high
availability.

• One object may serve as a
gateway interface to a service,
handling each request by
constructing a thread to
asynchronously provide the
service.

• Listener must quickly dispose
of the connection so that it
can go back to listening for
other requests to connect and
clients find the server
available.

Server Main Thread

Socket Receiver Thread

Server

Socket

use socket

data

Client

Client

Socket

listener

socket

C
re

a
te

T
h

re
a

d

data

port

listener

port

Why use Asynchronous Systems?

• The services need to be controllable.
• Activities within threads can be suspended, resumed, and stopped by other

threads. Controller issues command but does not wait for action.

• The system needs to send asynchronous messages.
• The calling object may not care when a requested action is performed, at least

within some reasonable bounds.

Process #2

receiver

Process #1

sender

function sending

data to

Process #2

function receiving

data from

Process #1

interprocess

communication

Non-Blocking Communication in Asynchronous System

FIFO queue

processing thread

receiver thread

Why use Asynchronous Systems?

• The system may need to handle bursty events.
• Some events may occur in rapid succession for brief periods, perhaps far faster than

the system can react to them. When this happens an asynchronous system can
enqueue requests to work on at a later time.

uniform receiverbursty sender

Bursty System

Synchronous Radar
Just won’t work!

RSP::ProcessReport()

RC::BeamReport()

TDM::ProcessReport()

TDM::DataEdit()
TDM::TrackAssoc() TDM::Send()

OI::Display() COM::Send()

REM::Process()

Hypothetical Radar Processing Chain

detection

report

detection

report

detection

report

target

report

target

report

track

report
track

report

target

report

target

report

track

report

sector

report

sector

report

Beam

Selection

Commands

edit

commands

• A sychronous radar would
require the signal processor to
wait, when it sends a report,
for the report to be processed
at several levels.

• This just will not work. The
signal processor must operate
at a high rate of speed to
service all of the cells in
coverage.

• Each radar component must
function independently on the
inputs provided to it.

Asynchronous Radar

Radar Signal

Processor

Radar Control

Target Data

Management

Communications

Operator

Interface

detection

report

detection

report

target report,

track update

target report,

track update

Remote Site

sector

report

Typical Distributed System - Radar Processing

• In the asynchronous
radar each component
computes its output and
deposits it in a queue for
processing by the next
layer.

• The messages at the top
of the chain are small
and arrive at a high rate.

• Message lower in the
chain are larger and less
frequent.

Asynchronous Operation

• There are several ways to support Asychronous Operation. All of these
use asynchronous methods:

• Create a new thread
• Pass it the method to run asynchronously, using a ThreadStart delegate.

• Use a thread from a ThreadPool
• Queue a work item with a delegate pointing to the method to run asynchronously.

• Use a BackgroundWorker in a Form
• Has useful events for signaling progress and completion.

• Use a delegate’s BeginInvoke(), EndInvoke() methods
• Runs the delegate’s methods asynchronously.

• Use a Form’s BeginInvoke(), EndInvoke() methods.
• Allows a worker thread to call a Form method running on the Form’s UI thread.

• Use a class that implements ISynchronizeInvoke interface
• The ISynchronize interface declares methods:

InvokeRequired(), BeginInvoke(), EndInvoke(), Invoke()

Asynchronous Delegate

• class Asynch
{

public delegate string SlowCallDelegateType(int secs);
public SlowCallDelegateType callDelegate;

public string SlowCall(int millisecs) { … }
// more class functionality

}

• asOp.callDelegate =
new Asynch.SlowCallDelegateType(asOp.SlowCall);

• // begin asynchronous operation

IAsyncResult ar
= asOp.callDelegate.BeginInvoke(1000,null,null);

// do some useful work here, then wait
// on asynchronous call to finish

string result2 = asOp.callDelegate.EndInvoke(ar);

• Here, asOp is an instance of Asynch.

Delegate’s BeginInvoke Arguments

• The arguments of BeginInvoke depend on the signature defined by
the delegate.

• The first arguments are the signature arguments ordered as:
• in parameters

• out parameters

• in/out parameters

• ref parameters

• These are followed by the final two arguments of type:
• AsyncCallback

• AsyncState

• The return value of BeginInvoke is an instance of IAsyncResult.

Delegate’s EndInvoke Arguments

• The arguments of EndInvoke consist of the non-in parameters and
the IAsynchResult instance returned by BeginInvoke:

• The first arguments are the signature arguments ordered as:
• in parameters omitted

• out parameters

• in/out parameters

• ref parameters

• These are followed by the final argument of type:
• IAsynchResult instance returned by BeginInvoke.

• The return value of BeginInvoke is the return value of the delegate’s
function.

Design Forces

• The primary design forces are safety and liveness:
• Safety

• nothing bad ever happens to an object or resource

• Liveness
• Something eventually happens within an activity

• Performance
• How soon and quickly are services provided?

• Reusability
• How easy is it to use services in another programming context?

Safety

• Read/Write conflicts
• One thread attempts to read a field while another writes to it.

• Write/Write conflicts
• Two threads attempt to write to the same field.

Liveness

• In a live system we expect to make progress toward completion. This
may not happen immediately for the following reasons:

• Locking
• A lock or synchronized method blocks one thread because another thread

holds the lock.

• Waiting
• A thread blocks, on a join() or wait() method, waiting for an event, message,

or result computed by another thread.

• Input
• An IO method waits for input that has not arrived yet.

• Contention
• A runnable thread fails to run because other threads are occupying the CPU

or other needed resources.

• Failure
• A method encounters an exception or other fault.

Liveness (continued)

• A permanent lack of progress may result from:
• Deadlock

• Circular dependencies between locks

• Missed event
• A thread starts waiting for an event after the event occurred

• Nested lockout
• A blocked thread holds a lock needed by another thread attempting to wake it up.

• Livelock
• A continuously retried action fails continuously.

• Starvation
• Scheduler fails ever to allocate CPU time to a waiting thread.

• Resource exhaustion
• A thread attempts to access one of a finite set of resources, all of which are in use (file

handles for example).

• Distributed system failure
• A remote machine, hosting a needed service, is unavailable.

Performance

• Permformance is usually described by the metrics:
• Throughput

• Number of operations per unit time, e.g., messages processed, files sent, …

• Latency
• Elapsed time between a request for service and its satisfaction.

• Capacity
• The number of simultaneous activities that can be supported for a given throughput or maximum

latency.

• Availability
• Number of simultaneous requesters that can be supported without failures to connect.

• Efficiency
• Throughput divided by the amount of CPU resources needed, e.g., CPUs, memory, IO devices, …

• Scalability
• Rate at which throughput or latency improves when resources are added to the system.

• Degradation
• Rate at which latency or throughput decreases as more clients or activities are added without

adding new resources

Performance (continued)

• Factors that affect permformance
• Partitioning of distributed resources

• Affects the amount and sizes of data sent between processes, machines, and networks.

• Caching
• Holds data that has been sent previously for possible use later. Attempts to avoid retrieving

resources already held. May induce problems with consistency and staleness of the data.

• Locking strategy
• May trade off the use of immutable objects against use of mutable locked objects, e.g.,

create new immutable objects to achieve a state change, rather than locking and modifying a
mutable object’s state.

• Use of background tasks
• Define activities that can usefully proceed while main activities are blocked.

• Use algorithms specifically designed for concurrency
• Some efficient sequential algorithms do not lend themselves to efficent concurrent

implementation, but there may be good concurrent versions available.

Threading Memory Model

• Both the compiler and the processor that your code runs on are allowed to:
• Cache variables in registers or other cache memory

• Rearrange instructions

• For single threads, the compiler and processor are constrained to perserve sequential
semantics, e.g., program order semantics.

• For interactions between threads there are no such guarantees.

• The lock construct and volatile qualifier are intended to extend these guarantees to
threads operating in a multi-threaded environment.

• Any thread running within a lock body or in a synchronized function will enjoy the program
order semantics guarantee.

• Releasing a lock forces a flush of all writes from the thread’s working memory.

• Acquiring a lock forces a reload of all fields accessible to the acquiring thread.

• If a variable is qualified as volatile:
• Any written value is flushed by the writer thread before the writer performs any other memory

operation.

• Reader threads must reload the values of volatile variables for each access.

End of Presentation

Three Threaded Client with SC/PBRO

Server

remotable object

Client

Communication
Thread

Remoting Thread

Receiving Thread

RecvQ

SendQ

Server-Side

Processing

of

Client Messages

Extract Messages

from

Queue and Display in

User Interface
Remoting Thread

Client-Side

Preparation

of

Request Messages
Request Msg and PBR Object

Calls t
o Client's

PBR

main thread

main thread

Pass By

Reference

Object

File Storage

S
a

v
e

 F
ile

s

File Block

File Name Returned

