
Rust Models

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/Resources/RustModels.pdf

https://jimfawcett.github.io/
https://jimfawcett.github.io/Resources/RustModels.pdf

Model

• “A model of a system or process is a theoretical description that can
help you understand how the system or process works, or how it
might work.”
- collinsdictionary.com

• Models help us understand important features
• Use language effectively

• Accelerate learning process

2

Models Prologue

• Rust is an interesting and ambitious language.

• We will consider Rust Models for:
• Type Safety

• Ownership

• Objects

• User-Defined Types

• Generics

• Code Structure, Compilation, and Execution

• Chapter 1 of the Rust Story
• https://jimfawcett.github.io/RustStory_Prologue.html

3

https://JimFawcett.github.io/RustStory_Models.html

https://jimfawcett.github.io/RustStory_Prologue.html
https://jimfawcett.github.io/RustStory_Models.html

Why Rust?
• Memory Safety

• No dangling pointers or null references

• No reading or writing to unowned memory

• Rust’s type system enforces sane ownership policies.

• No Data Races
• The same ownership policies applied to thread interactions ensures data race

free operation

• Performance
• As fast as C and C++

• Abstraction without Overhead
• Traits and Trait objects

• In the same ballpark as C++

4

Hello Rust World!

• This section assumes you have no experience with Rust.

• Getting started:
• Install Rust - https://www.rust-lang.org/tools/install

• This takes just a few minutes

• Puts cargo, Rust’s package manager, builder, executer on your path

• Install Visual Studio Code - https://code.visualstudio.com/download

• Now we’re ready for a hello world ++ experiment.
• Create a temporary directory and navigate to that in a command prompt.

• Issue command: cargo new hello

• Issue command: cd hello

• Issue command: code . [opens Visual Studio Code in hello directory]

5

https://www.rust-lang.org/tools/install
https://code.visualstudio.com/download

Hello World

6

Building and Running with Cargo

7

Cargo.toml – defines package

8

Add another function

9

Modify to use “object”

10

Why Rust?
• Memory Safety

• No dangling pointers or null references

• No reading or writing to unowned memory

• Rust’s type system enforces sane ownership policies.

• No Data Races
• The same ownership policies applied to thread interactions ensures data race

free operation

• Performance
• As fast as C and C++

• Abstraction without Overhead
• Traits and Trait objects

• In the same ballpark as C++

12

• A program is well defined if no execution can exhibit undefined
behavior.

• A language is type safe if its type system ensures that every program
is well defined.

• A non-type safe language may introduce undefined behavior with:
• Integer overflow, e.g., wrap-around

• Buffer overflow – out of bounds access

• Use after free – access unowned memory

• Double free – corrupt memory manager

• Race conditions – mutation without exclusive ownership

13

Type Safety

Undefined Behavior – C++ dangling reference

14

Undefined Behavior – C++ index out of bounds

15

In defense of C++ - Dangling Reference

• If we had used an iterator:
• auto iter1 = ++v.begin();

• v.push_back(4);

• Std::cout << *iter1; // throws exception – no undefined behavior

• It is standard practice to access containers with iterators, so well-
crafted C++ will not exhibit undefined behavior.

• The difference:
• With Rust you can’t get undefined behavior (UB) – most often programs fail to

compile if they would have UB.

• C++ code has to be well-crafted to avoid UB, errors are discovered at run-
time, not compile-time.

16

In defense of C++ - Index out of Bounds

• If we had used a range-based for loop:
• for(auto item : array) {
 std::cout << item << “ “;
}

 there is no chance of out-of-bounds indexing

• It is standard practice to traverse containers with range-based for
loops, so well-crafted C++ will not exhibit undefined behavior.

• The difference:
• With Rust you can’t get undefined behavior (UB) – out of bounds index causes

panic (exit) with no chance to access unowned memory.

• C++ code has to be well-crafted, using standard idioms, to avoid UB.

17

• Rust is a type safe language, avoiding undefined behavior.

• Rust’s type system prevents data races in multi-threaded
programs.

• Rust’s type system ensures this behavior with its Ownership
model:
• Prevent mutation combined with aliasing

• Ensure memory safety

• Prevent mutation, aliasing, and lack of access ordering
• Avoid data races

18

Safe Type System - Rust

Rust Ownership

• Ownership rules are, in principle, quite simple:
• Rust enforces Read-Write-Locks on data access at compile-time.

• Any number of readers may access value simultaneously.

• Writers get exclusive access to value – no other readers or writers.

• What are readers and writers?
• Any variable bound to a value with no mut qualifier is a reader.

• Original owner: let s = String::from(“a string”);

• References to the data: let r = &s;

• Any variable bound to a value with mut qualifier is a writer:
• Original owner: let mut s = String::from(“another string”);

• References to the data: let r = &mut s;

19

Copies, Moves

• Copy
• Data resides in one contiguous block of memory (blittable)
• let x = 3.5;

• let y = x;

• y gets copy of x’s value ==> two separate locations holding the same value.

• Copy binding creates new owner of new data.

• Move
• Data resides in two or more blocks, usually one in stack, one in heap.
• let s = String::from(“a string”);

• let t = s;

• s value moved to t, s becomes invalid

• Move binding transfers ownership

20

Rust Move versus Copy

• Rust will copy any value
contained in a single contiguous
block of memory (blittable)
• let x = 2;

• let y = x; // copy

• Any value requiring separate
parts, like the string shown in
the right panel will be moved.
• let s = String::from(“a
string”);

• let t = s;
// value moved from s

 // t owns string, s invalid

21

Move

• let s = String::from(“a string”);
• s consists of a control block in stack

memory and a character array in the
heap.

• let t = s;
• s’s control block is blitted to t

• That preserves the pointer to the heap
character array.

• So now t owns the string and s is marked
as invalid.

• This is fast. Characters are not copied,
only the small control block is copied.

Rust Clone

• Often a type satisfies clone trait
(if not you can add that).

• This allows moves to be avoided
by explicitly calling clone() to
make a copy.
• let t = s.clone();
// s still valid

• Clone must always be called
explicitly. Rust wants you to
know when you invoke an
expensive operation.

23

References and RwLocking
• Non-mutable Vec and references - all readers:

• let v = vec![1,2,3];

• let r1 = &v; let r2 = &v; // each has view of v’s data

• Mutable Vec, non-mutable references – using reference inhibits Vec mutation:
• let mut v = vec![1,2,3];

• let r1 = &v; let r2 = &v; // each has view of v’s data

• r1 and r2 borrow v’s data // v cannot mutate while borrows are active

• Borrows end when they go out of scope;

• Mutable data, mutable reference – writer v’s ability to write borrowed
• let mut v = vec![1,2,3];

• let mut r = &v; // r has borrowed v’s ability to mutate

• v cannot mutate until borrow ends

24

Rust won’t allow mutation with an active reference

25

Rust allows mutation if we don’t use the reference

26

Hello Ownership!

• Rust’s ownership policies:
• Every value has one and only one owner

• Ownership can be transferred with a move

• Ownership can be borrowed with a reference
• References hold a view into value

• Original value’s owner can’t mutate value while borrowed

• Immutable references can be shared

• Mutable references are exclusive

• Borrowing ends when reference goes out of scope

• This fits very well with pass by reference function arguments

• Values are, by default, immutable, but can be made mutable
• let x = 3; // x is immutable

• let mut y = 3; // y is mutable

27

Hello Rust Ownership

28

Immutable References

• Any number of immutable references may be declared for a value:
• let mut s = String::from(“a string”);

• let r1 = &s;

• let r2 = &s;

• The original owner can not mutate until all active references go out of
scope:
• fn show(s:&String) { … }

• let mut t = String::from(“another string”);

• show(&t);

• t.push_str(“ with more stuff”);
// mutation ok, left &t’s scope, e.g. show function exit

• After the last reference use owner can mutate.

Mutable References

• Only one mutable reference may be declared for a value:
• let mut s = String::from(“a string”);

• let r1: &mut String = &mut s;

• // let r2: &mut String = &mut s; // won’t compile

• // let r3 = &s; // won’t compile

• The original owner can not mutate until active reference goes out of
scope (same as before):
• fn show(s:&String) { … }

• let mut t = String::from(“another string”);

• show(&t); // copies reference to show stack frame, e.g., a borrow

• t.push_str(“ with more stuff”);
// mutation ok, &mut t went out of scope

Ownership summary

• These simple rules provide memory safety:
• let x = y ==> copy if blittable, otherwise move ==> transfer of ownership

• Can’t use y if moved from
• let r1 = &x; let r2 = &x;
 ==> may have any number of immutable references

• x may not be mutated while there are active references
• let mut z = …

• Let mut r3 = &z; ==> may only have one mutable reference

• Mutable references become inactive when they go out of scope.

• Prefer use of references for pass by reference functions and methods

31

Rust Object Model
• Rust does not have classes but structs are used in a way very similar

to the way classes are used in C++.

• Structs have:
• Composed members, may be instances of language or user defined types.
• Aggregated members, using the Box<T> construct:

• Box<T> acts like a std::unique_ptr<T> in C++.

• Methods - functions that accept &self which is a reference to the instance
invoking the function.
• &self is similar to the C++ pointer this.
• Explicitly passed as first argument

• Traits - implemented by a struct, similar to Java or C# interfaces.
• Access control - uses the keyword pub.

• Anything not decorated with pub is private but accessible in the local crate.

32

Traits

• Traits provide a contract – function specifications – that guarantee
behavior.
• Any type that implements the Clone trait can be cloned by calling clone().

• Functions can accept arguments specified with either types or traits.
• Specifying arguments with traits is more powerful – and more expensive.

• Function will process any argument with a specified trait regardless of their
type.

• If a type implements a trait, the trait methods become part of the
public interface for that type, e.g., methods that can be called.

• You can even implement traits on existing types, much like C#
extension methods.

33

Implementing Traits and Methods
• trait Size {
 fn size(&self) -> usize;
}

• trait Show : Debug {
 fn show(&self) {
 print!(“\n {:?}”, &self);
 }
}

• #[derive(Debug, Copy, Clone)]
pub struct Test { x:i32, y:f64, }

• impl Size for Test {
 fn size(&self) -> usize {
 std::mem::size_of::<Test>()
 }
}

• impl Show for Test {}
// using default impl

• impl Test {
 pub fn new() -> Self {
 Self { x:42, y:1.5, }
 }
 ...
}

34

• trait Show : Debug { … }

• trait Size { … }

• struct Test { x:i32, y:f64, }

• impl Show for Test { … }

• impl Size for Test { … }

• impl Test { … }

35

Rust Object Model – Static Binding

36

• fn size_is(o:&dyn Size) ->usize {
 o.size()
 }

• trait Show : Debug { … }

• trait Size { … }

• struct Test { x:i32, y:f64, }

• impl Show for Test { … }

• impl Size for Test { … }

• impl Test { … }

• let mut t = Test { x:42, y:1.5, };

print!(
 "size of t = {:?}", size_is(&t)
);

size_is(…) doesn’t know anything
about Test. It does know Size::size

Rust Object Model – Dynamic Binding

Copy and Move Types
• Copy types have instances that

can be copied and assigned.
• let t = Test::new();

• let u = t; // copy

• t = u; // assign

• Value types implement Copy and
Clone traits

• Move types have instances that
are moved instead of copied.
Any type that does not
implement Copy is a move type.

• Moveable types can implement
the Clone trait but not Copy.

• Test is a value type.

37

• trait Size {
 fn size(&self) -> usize;
}

• trait Show : Debug {
 fn show(&self) {
 print!(“\n {:?}”, &self);
 }
}

• #[derive(Debug, Copy, Clone)]
pub struct Test { x:i32, y:f64, }

• impl Size for Test {
 fn size(&self) -> usize {
 std::mem::size_of::<Test>()
 }
}

• impl Show for Test {}
// using default impl

• impl Test {
 pub fn new() -> Self {
 Self { x:42, y:1.5, }
 }
}

Comparison with C++

• C++ object model provides:
• Composition

• Aggregation

• Inheritance

• Most classes can be value types:
• Copy constructors

• Assignment operator overloads

• Destructors

• Many are value types by default
• Members are primitive types or

STL containers

• Rust object model provides:
• Composition

• Aggregation

• Traits
• Provide functions but no data

• Some structs are Copy, but many
must be Move.
• No overloads, so no overloaded

assignment operators

• Move types can implement clone()
but that is never called implicitly

38

C++ Person Class Hierarchy Example – from C++ Models

• The class structure shown on the right represents a
software development organization.

• Software Engineers inherit the person type and
implement the ISW_Eng interface. SW_Eng is an
abstract base class for all software engineers.

• Any function that accepts a pointer to SW_Eng will
also accept pointers to Devs, TeamLeads, and
ProjMgrs.

• If ISW_Eng defines a pure virtual method, say
doWork(), any derived class can override that
method.

• Devs doWork that devs do

• TeamLeads doWork that team leads do

• ProjMgrs doWork that project managers do

• So the doWork() method binds to code based on the
type of object bound to an ISW_Eng pointer.

39

Rust Generics

• Generic functions:

• fn demo_ref<T>(t:&T) where T:Debug {
 show_type(t);
 show_value(t);
}

• fn show_type<T: Debug>(_value:&T) {
 let name = std::any::type_name::<T>();
 print!(
 “\n TypeId: {:?}, size: {:?}”,
 name, size_of::<T>()
)
}

• Generic structs:

• #[derive(Debug)]
struct Point<T> { x:T, y:T, z:T }

40

• Rust Generics define trait constraints that limit the types that will compile.
• Rust generics do not support specializations that broaden the number of types

that can be used.

Traits

• Traits provide a contract – function specifications – that guarantee
behavior.
• Any type that implements the Clone trait can be cloned by calling clone().

• Functions can accept arguments specified with either types or traits.
• Specifying arguments with traits is more powerful – and more expensive.

• Function will process any argument with a specified trait regardless of their
type.

• If a type implements a trait, the trait methods become part of the
public interface for that type, e.g., methods that can be called.

• You can even implement traits on existing types, much like C#
extension methods.

41

Traits – Note: these traits don’t use T, but their implementation does

• trait Show : Debug {
 fn show(&self) {
 print!("\n {:?}", &self);
 }
 }

• trait Size {
 fn size(&self) -> usize;

 }

• fn size_is(o:&dyn Size) ->usize {
 o.size()
 }

• #[derive(Debug, Copy, Clone)]
pub struct Point<T>{ // public type
x:T, y:T, z:T, // private data

}

• impl<T> Show for Point<T>
 where T:Debug {} // using default impl

• impl<T> Size for Point<T> {
 // must provide impl

fn size(&self) -> usize {
std::mem::size_of::<Point<T>>()

}
 }

• let mut t =
Point { x:0.0, y:1.0, z:0.5, };

• t.show();

• print!(
 "\n size of t = {:?}", size_is(&t)
);

42

size_is(o:&dyn Size) accepts both
ordinary and generic arguments

Generics Summary

• Generics help us build flexible code:
• Create collections that can hold many different types, but we need only one

design.

• Generics with traits provide even more help
• Define functions and methods that accept arguments that satisfy a trait

specification.

• Much more flexible than defining functions that take specific typed
arguments.

• Allows us to specify that only some categories of types should be accepted,
e.g., move-able, or clone-able, or display-able.

43

Code Structure

• Source code is written in files

• For many software systems file structures become large and hard to understand.

• To support readability and maintenance, we create packages that consist of a few
files with a single purpose and document the purpose and design in comments.
• Source files are units of construction

• Binaries - /src/main.rs – has main function, builds to an executable

• Libraries - /src/lib.rs – builds to library

• Modules - /src/*.rs – loaded when building binaries and libraries

• A Crate is a unit of translation

• Crates start as a set of source files in the /src directory and compile to a single file:
• Binaries - /target/debug/[package_name].exe on windows

• Libraries - /target/debug/lib[package_name].rlib

44

Crate
• The source form of a crate is composed of:

• A crate root, main.rs or lib.rs, and a set of zero or more supporting source files
called modules, all found in the /src folder.

• The crate root loads any modules identified with the keyword mod at the top
of its source.
• mod some_module ➔ loads some_module.rs

• Each module may also load other modules.

• The crate may specify dependencies on other crates and import their
definitions into the root or any of its modules.
• Dependencies are specified in the [dependencies] section of the cargo.toml file.

• The translation form of a crate is a single compiled file, e.g., one of:
• /target/debug/[package_name].exe

• /target/debug/lib[package_name].rlib

45

External Dependencies
• External dependencies may be local or remote:

In cargo.toml:

[package]

name = "test_rust"

version = "0.1.0"

authors = ["James W. Fawcett <jfawcett@twcny.rr.com>"]

edition = "2018"

[dependencies]
my_lib = { path = “../my_lib” } // from local drive
serde = “1.0.104” // from https://crates.io

• The cargo build process will load my_lib and serde crates
before building this crate.

46

https://crates.io/

Packages
• A Package is a collection of directories and files that are the basis for builds

• Cargo.toml – specifies package metadata, dependencies, and optional directives

• /src – directory containing a binary or library source crate

• /target – directory containing translated binaries or libraries

• /examples – directory containing example code that exercises the package library

• The Rust build system is transitive
• Builds start with the package root cargo.toml

• Parse it to find dependencies

• Load the depending library and parse its cargo.toml

• …

• Build the local crate along with its dependencies

47

Library Crate Construction Co-Tests
• For anything other than trivial example code it’s very useful to test as we build

code:
• A library crate is created with the command

 cargo new --lib [package-name].

• That builds a lib.rs containing a single configured test that asserts 2 + 2 = 4.
• This is simply a demonstration of how to build test cases for a library.

• Each test passes if, and only if, there are no failed assertions.

• Every time we add a few lines of code in the lib.rs file we add small tests, each in a configured
test block and then build and execute with the command:
 cargo test
in a terminal window located in the crate root folder.

• This “co-test” process allows us to very quickly find errors. If a test fails, the problem is
almost certain to be in the few lines of code we entered after the last test.

48

Example – Crates and Packages

• The diagram at the right shows a set of crates that
work together to implement some functionality.

• The diagram shows dependency relationships
between crates.

• The ComponentA crate provides an interface and
object factory to allow ComponentB and Executive
to use it without binding to its implementation
details.

• The Executive package consists of all three of
these crates.

• Code for this example:
https://github.com/JimFawcett/RustBasicDemos/ in
code_structure_demo

49

https://github.com/JimFawcett/RustBasicDemos/

Example – Traits and Structs

• This diagram shows structs that are defined in
each of the files from the previous slide.
• TCompA is an interface1 trait for ComponentA

• ComponentA implements the trait to provide
exported services

• ComponentB doesn’t provide an interface

• ComponentB uses ComponentA through its
interface trait and factory2

• Executive composes ComponentB and uses
ComponentA through its trait and factory

1. Rust does not have an interface construct. We use traits with
virtual functions for that purpose.

2. ComponentA’s factory is implemented with a function,
declared and implemented in ComponentA.

50

Use of Interfaces and Factories

• If you look at interface trait TCompA you will see it has no implementation detail.

pub Trait TCompA {
 fn do_work(&self);
 fn get_msg(&self) -> String;
 fn set_msg(&mut self, m:&str);
}

pub fn get_instance() -> Box<dyn TCompA> {
 Box::new(ComponentA::new())
}

• Executive and ComponentB use ComponentA’s factory function, get_instance
to avoid binding to the concrete ComponentA type.

• That means that Executive and ComponentB have no source dependencies on
ComponentA. ComponentA can change any of its implementation without
affecting Executive or ComponentB as long as the interface, TCompA, and
factory function signature, get_instance, don’t change.

51

Compilation Model

• Rust compilation is a transitive depth first search
process.

• The cargo build tool starts by parsing the package’s
cargo.toml file, looking for dependencies and build
attribute specifications.

• For each dependency cargo parses its dependencies
transitively until it reaches a cargo.toml with no
dependencies.

• It then builds that crate root with its loaded
modules, then returns to the previous crate in the
dependency tree.

• When it returns to the build package it builds the
files in /src and deposits its results in /target.

• If any of the dependencies have current builds, that
library in /target is used and files in /src are not
built.

52

• Note that cargo.toml files may list zero or
more dependencies, so the dependency
structure is a tree, not a list.

Cargo Builds
Compilation of local sources

• When external library dependencies are
resolved cargo builds:
• The crate root in /src, main.rs or lib.rs

• Any modules that the crate root depends on –
they reside in the same /src directory.

• Cargo knows about these module
dependencies:
• The crate root file declares modules it

depends on with a
mod file_name declaration.

• Modules may declare dependencies on other
modules in the same way.

53

Compilation of external libraries

• Cargo.toml lists dependencies on external
libraries. These are loaded and built or
retrieved from the build cache.

• This is a transitive process, that walks the
crate’s dependency tree.

Program Execution

• There are three ways to execute code in a fully formed crate, using cargo:
• Execution of binaries:

If the crate root is a binary, e.g., main.rs, the command
 cargo run
will execute the program

• Testing libraries:
If the crate root is a library, e.g., lib.rs, the command
 cargo test
will run any tests configured at the end of the library. Tests pass if there are no assertions in
the test code, and fail if there are.

• Running examples:
For library crates, if you create an /examples folder and put demonstration modules there,
then the command
 cargo run –example an_example
will run the code in an_example.rs, assuming that you’ve supplied a main function for that
module. The user expects that this code will demonstrate use of library functionality.

54

Program Execution

• When the executable for a
program is loaded:
• Initialization code provided by the

compiler executes

• Then the function main is
entered.
• main is just a function that is

defined to the linker as the entry
point for processing.

• Any function may call other
functions within the
executable.

55

Use of program memory

• When the thread of execution enters a function an
allocation of stack memory is used to store function
parameters and any local data defined in the function.
• The same thing happens for every scope, defined by a

matching pair of braces, { and }. For example, an if
statement, using braces, allocates stack memory to hold data
local to its scope.

• A program may place any of its entities, e.g., an
instance of a user-defined type, into static memory,
stack memory, or heap memory.

• We will discuss consequences of that later in the next
slide.

56

Interaction with the Execution Environment

• There are two primary ways for a Rust program to
observe and use its execution environment:
• Use a stream object like std::stdin or std::stdout.

• Types for streams are provided by the standard library, via
import statements:
 use std::io::prelude::{*}, use std::fs::File, …

• The program may use services of its platform API by
using std::ffi (Foreign Function Interface) in an unsafe
block or by using a crate that wraps that:
• https://github.com/retep998/winapi-rs

57

Epilog

https://jimfawcett.github.io/RustStory_Models.html#epilogue

https://jimfawcett.github.io/RustStory_Models.html#epilogue

Conclusions

• If you understand the models, we’ve covered, I think you will find Rust syntax and
semantics to be convenient and sensible.

• Some particular parts of the language discussed in the Rust Story but not here are
intricate and require some study to master:
• String syntax and semantics because the only character type Rust recognizes in its native

strings, String and Str, is utf-8, which uses multi-byte characters of varying sizes.

• Life-time annotation needed for some scenarios using generics.

• Many crates in https://crates.io are used routinely by knowledgeable Rust developers, but
some take significant amounts of time and effort to use effectively.

• Rust avoids undefined behavior by incorporating a safe type system. That is
based on the ownership rules we’ve discussed. It takes a while to get use to the
rules, but compiler error messages are usually very good.

59

https://crates.io/

Presentation Resources

• The ideas discussed in this presentation are drawn from a web page:
 https://jimfawcett.github.io/RustStory_Models.html

which is part of the Rust Story:
 https://jimfawcett.github.io/RustStory_Prologue.html

• And code examples for the story are documented here:
 https://jimfawcett.github.io/RustBasicDemos.html

• These slides are available here:
 https://jimfawcett.github.io/Resources/RustModels.pdf

60

https://jimfawcett.github.io/RustStory_Models.html
https://jimfawcett.github.io/RustStory_Prologue.html
https://jimfawcett.github.io/RustBasicDemos.html
https://jimfawcett.github.io/Resources/RustModels.pdf

Background

• The material for this presentation comes from the github website:
• https://JimFawcett.github.io,

https://jimfawcett.github.io/Resources/RustModels.pdf

• The site provides a curated selection of code, some developed for
graduate software design courses at Syracuse University

• It also contains tutorial and reference materials related to that code.

• Some of that is presented in the form of “stories”

• Rust Models is the title of the first chapter of a “Rust Story”
• The story is a detailed walk-through of the Rust programming language. It

provides reference material for a set of repositories that hold source code for
utilities, tools, components, and demonstrations.

61

https://jimfawcett.github.io/
https://jimfawcett.github.io/Resources/RustModels.pdf
https://jimfawcett.github.io/CppStory_Prologue.html
https://jimfawcett.github.io/CppRepositories.html

	Slide 1: Rust Models
	Slide 2: Model
	Slide 3: Models Prologue
	Slide 4: Why Rust?
	Slide 5: Hello Rust World!
	Slide 6: Hello World
	Slide 7: Building and Running with Cargo
	Slide 8: Cargo.toml – defines package
	Slide 9: Add another function
	Slide 10: Modify to use “object”
	Slide 12: Why Rust?
	Slide 13
	Slide 14: Undefined Behavior – C++ dangling reference
	Slide 15: Undefined Behavior – C++ index out of bounds
	Slide 16: In defense of C++ - Dangling Reference
	Slide 17: In defense of C++ - Index out of Bounds
	Slide 18
	Slide 19: Rust Ownership
	Slide 20: Copies, Moves
	Slide 21: Rust Move versus Copy
	Slide 22: Move
	Slide 23: Rust Clone
	Slide 24: References and RwLocking
	Slide 25: Rust won’t allow mutation with an active reference
	Slide 26: Rust allows mutation if we don’t use the reference
	Slide 27: Hello Ownership!
	Slide 28: Hello Rust Ownership
	Slide 29: Immutable References
	Slide 30: Mutable References
	Slide 31: Ownership summary
	Slide 32: Rust Object Model
	Slide 33: Traits
	Slide 34: Implementing Traits and Methods
	Slide 35: Rust Object Model – Static Binding
	Slide 36: Rust Object Model – Dynamic Binding
	Slide 37: Copy and Move Types
	Slide 38: Comparison with C++
	Slide 39: C++ Person Class Hierarchy Example – from C++ Models
	Slide 40: Rust Generics
	Slide 41: Traits
	Slide 42: Traits – Note: these traits don’t use T, but their implementation does
	Slide 43: Generics Summary
	Slide 44: Code Structure
	Slide 45: Crate
	Slide 46: External Dependencies
	Slide 47: Packages
	Slide 48: Library Crate Construction Co-Tests
	Slide 49: Example – Crates and Packages
	Slide 50: Example – Traits and Structs
	Slide 51: Use of Interfaces and Factories
	Slide 52: Compilation Model
	Slide 53: Cargo Builds
	Slide 54: Program Execution
	Slide 55: Program Execution
	Slide 56: Use of program memory
	Slide 57: Interaction with the Execution Environment
	Slide 58: Epilog
	Slide 59: Conclusions
	Slide 60: Presentation Resources
	Slide 61: Background

