
Rust Error Handling
Important Part of Safe Systems Programming

Jim Fawcett

https://JimFawcett.github.io

What is Rust?

• A modern programming language that emphasizes:
• Compiler verified freedom from undefined behavior.

• Support for writing data race free code in multi-threaded environments.

• Performance comparable to C and C++.

• Rust builds on experience with C and C++ to provide a system
programming language that:
• Closes vulnerabilities by construction.

• Does not pay run-time performance penalty for safety.

• Enables abstractions needed to build large maintainable code bases.

• Rust compiles to native code and provides clever mechanisms to
ensure freedom from dangling references and resource leaks.

2

Safe and Productive System Programming
• Rust incorporates a number of interesting ideas that support modern

system programming:
• Compiler-checked single ownership policy with transfer and borrowing

operations.

• Heap storage only through smart pointers that use scope-based data
management, so no resource leaks.

• Traits that define contracts for static and dynamic polymorphism, using
generics and trait inheritance, essential for building flexible code that adapts
to changing requirements.

• Error handling: functions return Result<T, E> { Ok(t:T), Err(e:E) } enumerations.

• Dependency management through metadata supported transitive builds.

• Effective tools for building (cargo), checking code quality (clippy), formatting
(rustfmt), and documentation (rustdoc).

3

Error Handling

• This presentation focuses on Rust error handling.
• Role of panics in preventing undefined behavior

• Returning results from functions that may fail

• Matching return enumerations with appropriate operations

• Error event bubbling up call chain

• We will demonstrate these with discussions and code. You can find
all code presented here in this Error Handling Code Repository.

• You will find more details about ownership, objects, generics, and the
Rust build process in a series of podcasts that are being published by
CSIAC and also made available here.

• More details about Rust are provided in a Rust Story from my github site.

4

https://jimfawcett.github.io/RustErrorHandling.html
https://jimfawcett.github.io/Videos.html
https://jimfawcett.github.io/RustStory_Prologue.html
https://jimfawcett.github.io/

What’s Unique about Rust Error Handling?
• Rust identifies functions that may fail by returning Result<T, E>

• Rust encourages developers to handle every case were errors may
occur.

• You have to opt out if you don’t need to handle an error case.

• Rust has support for bubbling errors up the call chain, creating new
custom errors, and returning errors from main.

5

Errors

• Indexing out of bounds

• Divide by zero

• Integer overflow

• Console and file I/O failures to open or read/write

• Initializing String from non-utf8 byte array

• System and User-defined errors
• Users supply unexpected or malicious inputs

• Server not available

• Unexpected content format

6

Rust Panics

• A panic is a thread exit that attempts to unwind the stack, dropping
each object residing in the stack.
• Panics can be trapped and handled to avoid thread exit

• Should a panic occur while unwinding the stack from an earlier panic
the program will immediately abort.
• Multiple panic aborts cannot be trapped, so stopping in this case is inevitable

• Panics are intended program actions that avoid undefined behavior
due to program errors.
• Indexing out of bounds

• So panics are the lowest level of error handling mechanisms.

7

Avoiding Undefined Behavior with Panic
C++ Code

Rust Code

Panic terminates before
memory can be accessed

Unowned memory can be accessed.
Process ends normally.

8

Avoiding Panics

• If your program affects user health, wealth, or safety, then don’t
panic.
• Thank you, Douglas Adams

• Abruptly terminating operation of a Boeing 797 flight navigation
system is not a good idea.

• The route to panic-free behavior is handling results of all functions
that may fail.
• Rust makes that obvious, using the return type Result<T, E> for functions that

may fail.

• Rust vigorously reminds you to add any missing error handling for those
functions – see slide #2.

9

Rust Error Handling Types

• Enum Result<T,E> { Ok(T), Err(E) }
• #[must_use]

• std crate import

• pub fn is_ok(&self) -> bool

• pub fn is_Err(&self) -> bool

• pub fn unwrap(self) -> T
• panics if not Ok

• Pub fn unwrap_err(self) -> E
• Panics if not Err

10

Error Types

• Std Error
• type Result<T> = Result<T,std::io::Error>;

• std::io crate import

• Custom Error
• Use std::io::{Error, ErrorKind};

• Let custom_error =
 Error::new(ErrorKind::Other, some_useful_value);

11

Using Result<T, E> with is_ok()

Illustrates accepting Result<String, FromUtf8Error>,
Testing, with Result::is_ok(), and returning a new
Result type: Result<(), CustomError>

12

Trapping Panics

• If you need to use code that doesn’t reliably avoid panics you may
attempt to trap them:
• trap_panic(unreliable_function, description_str) -> Result;

• Definition in next slide

• Traps are not guaranteed to succeed.
• A panic unwinds the call stack, returning resources to the process with drop.

• If a drop also panics, the system will immediately abort.

• If that happens before leaving trap_panic the trap will fail.

13

14

Trapping Panics

Error Handling that Avoids Panics

• Each function that can fail should return a std::result::Result<T, E>
• fn f<T, E>() -> Result<T, E> { /* code that can fail */ }

• std library functions do this and so should user-defined functions

• Result is an enumeration
• Enum Result<T, E> { Ok(T), Err(E), }

• Returned Result instance is either Ok(t:T) or Err(e:E)
• t is the computed value of f() or unit, (), if no such value is computed

• e is the instance of error encountered, either from Error enumeration or user-defined

• Testing Result
• let rslt = f();

• if rslt.is_ok() { let t:T = rslt.unwrap(); /* do something with t */ }

• if rslt.is_err() { let e:E = rslt.unwrap_err(); /* do something with e */ }

15

Evaluating Result by Matching
• let rslt = f();

• match rslt {
 Ok(t) => { /* do something with t */ },
 Err(e) => { /* do something with e */ },
}

• match is required to define actions for both possible results

• “if let” uses matching operator =
• if let Ok(t) = rslt {
 /* do something with t = rslt.unwrap() */
}
else {
 /* do something with e = rslt.unwrap_err() */
}

16

Demonstration code using match and if let

match requires testing both
cases, Ok and Err

if let doesn’t require handling
both cases, but the code may
do so, as shown

17

Bubbling Errors up Call Chain

• fn g<T, E>() -> Result<T, E>

• fn f<T, E>() -> Result<T, E> {

 // code elided

 let t:T = g()?

 // code using t elided

}

• If g() returns an error the try operator ? returns from f(), passing out
the Result object, Err(e:E).

• Otherwise, the ? operator unwraps the result, t:T and binds to t.

18

Bubbling Errors up the Call Chain

f<T>() -> Result<T, E>

 if Result<T, E> contains Ok(t:T) after evaluating f()
 then f()? Evaluates as t = f().unwrap();
 if Result<T, E> contains Err(error)
 then f()? Returns Result<T, E> to caller

19

Examples of Common Error Handling

• Console I/O

• File I/O

• TCP communication processing

• Inter-process communication with pipes

• We will briefly discuss the first two in this presentation

20

Console I/O

• std::io::stdin() -> Stdin

• Stdin functions:
• fn read_line(&self, buf:&mut String) -> Result<usize>

• fn read_to_string(&mut self, buf:&mut String) -> Result<usize>

• Many more here: https://doc.rust-lang.org/1.4.0/std/io/struct.Stdin.html

• std::io::stdout() -> Stdout

• Stdout functions
• fn write(&mut self, buf: &[u8]) -> Result<usize>

• fn write_all(&mut self, buf: &[u8]) -> Result<usize>

• fn flush(&mut self) -> Result<()>

• Many more here: https://doc.rust-lang.org/1.4.0/std/io/struct.Stdout.html

21

https://doc.rust-lang.org/1.4.0/std/io/struct.Stdin.html
https://doc.rust-lang.org/1.4.0/std/io/struct.Stdout.html

Console I/O – std::io::stdin()

22

Console I/O – std::io::stdout()

arg = _valid

arg = _invalid

23

std::io::stdout()
Stdout() on Windows platform does not work
well with non-utf8 characters. If you pass a
buffer containing non-utf8 byte sequence(s) the
program will panic.

Moreover, that panic cannot be trapped because
the stack unwinding process results in a second
active panic which always calls an immediate
abort.

Note that you can always avoid this problem by
building a String from the byte sequence, as
shown in the previous slide. That does reliably
fail with a Result if any of the bytes can’t be
represented as part of a utf-8 sequence.

If it doesn’t fail, you can safely pass the String, as
bytes, to the stdout().write or write_all methods.

24

File I/O

• std::fs::File

• File functions:
• fn open<P: AsRef<Path>>(path: P) -> Result<File> // opens read-only

• fn create<P: AsRef<Path>>(path: P) -> Result<File> // opens write-only

• fn with_options() -> OpenOptions

• Many more here: https://doc.rust-lang.org/std/fs/struct.File.html

25

https://doc.rust-lang.org/std/fs/struct.File.html

Flexible File Open

26

Syntax of the Rust language does not support bit-masking on enums (which you can do in C++). The reason
is that Rust enums may have any associated type, not just integers (like C++). This code illustrates one way
to accomplish bit masking on options.

File Error Handling

27

Two cases are presented here. The first
attempts to open a file, and, if it does not
exist, will create and open it.

The second case does not attempt to create
the file if it does not exist, so will fail if it
doesn’t exist.

Open errors are managed by examining the
open_file function’s result. Write failures are
handled by bubbling up to the caller – main in
this case, so a write error terminates the
program with an error message.

Summary

• Rust error handling uses:
• panics

• Trapping panics has behavior similar to C++ exception handling

• std::Result<T,E>
• Must handle both Ok(t:T) and Err(e:E)

• Matching
• Equivalent to manually handling Result, but often less code

• call-chain error event bubbling
• Supports chaining calls, e.g., anInstance.f1()?.f2()?.f3()?;

• Chaining requires each function to return self or &self

• Rust tries to prevent developers from ignoring errors or forgetting to
manage them.

28

References
Link Contents

Rust Error Handling Code Demonstration code for this presentation

Rust Book Covers most of the language clearly

Gentle Introduction to Rust Well written, fewer topics than Rust Book, very clear

Half Hour to Learn Rust Stroll throught most of the common constructs

Rust Standard Library The official documentation for the std library

29

https://jimfawcett.github.io/RustErrorHandling.html
https://doc.rust-lang.org/book/
https://stevedonovan.github.io/rust-gentle-intro/
https://fasterthanli.me/blog/2020/a-half-hour-to-learn-rust/
https://doc.rust-lang.org/std/

That’s all Folks!
Thanks for listening/reading

30

	Slide 1: Rust Error Handling Important Part of Safe Systems Programming
	Slide 2: What is Rust?
	Slide 3: Safe and Productive System Programming
	Slide 4: Error Handling
	Slide 5: What’s Unique about Rust Error Handling?
	Slide 6: Errors
	Slide 7: Rust Panics
	Slide 8: Avoiding Undefined Behavior with Panic
	Slide 9: Avoiding Panics
	Slide 10: Rust Error Handling Types
	Slide 11: Error Types
	Slide 12: Using Result<T, E> with is_ok()
	Slide 13: Trapping Panics
	Slide 14: Trapping Panics
	Slide 15: Error Handling that Avoids Panics
	Slide 16: Evaluating Result by Matching
	Slide 17: Demonstration code using match and if let
	Slide 18: Bubbling Errors up Call Chain
	Slide 19: Bubbling Errors up the Call Chain
	Slide 20: Examples of Common Error Handling
	Slide 21: Console I/O
	Slide 22: Console I/O – std::io::stdin()
	Slide 23: Console I/O – std::io::stdout()
	Slide 24: std::io::stdout()
	Slide 25: File I/O
	Slide 26: Flexible File Open
	Slide 27: File Error Handling
	Slide 28: Summary
	Slide 29: References
	Slide 30: That’s all Folks!

