Standard Template Library

Jim Fawcett
Summer 2017

Standard Template Library

Some Definitions

 vector, string, deque, and list are standard sequence containers.

e set, multiset, map, multimap, unordered_set, unordered_multiset, unordered_map
and unordered_multimap are standard associative containers.

* [terators:

Input iterators are read only — each iterated element may be read only once.
Output iterators are write-only — each iterated element may be written only once.

Forward iterators can read or write an element repeatedly. They don’t support operator--()
so they can only move forward.

Bidirectional iterators are like forward iterators except that they support moving in both
directions with operator++() and operator--().

Random access iterators are bidirectional iterators that add the capability to do iterator
arithmetic — that is they support *(it + n);

* Any class that overloads the function call operator - operator() - is a functor class,
and we refer to its instances as functors or function objects.

Standard Template Library

STL Supports Guaranteed Complexity
for Container Operations

* Vectors and Deques:

* Insertion is a linear time operation.

* Accessing a known location is constant time.

» Searching an unsorted vector or deque is a linear time operation.

e Searching a sorted vector or deque should be a logarithmic time operation (
use binary_search algorithm to ensure that it is).

* Lists:

* |Insertion is a constant time operation.

* Accessing a known location and searching, whether sorted or not, is linear
time, with the exception of the end points, which can be accessed in
constant time.

* Sets and Maps:
* Insertion and accessing are logarithmic time operations.

 Searching should be a logarithmic time operation (use member function
find, etc., to ensure that it is).

Standard Template Library

STL Supports Guaranteed Complexity
for Container Operations

* Unordered_set and Unordered_map
* Lookup, insertion, and deletion are constant time operations

* They are hashed containers, so we get access to an element by computing a
hash function on a key which maps to an address in the table. This is
constant time. If there is more than one element that hashes to that address
then we search a linked list rooted at that address (the elements on this list

are referred to as a bucket).
* So access is nearly constant time.

Standard Template Library

STL Header Files for Containers

<deque>

<list>

<map>

<queue>

<set>

<stack>

<vector>

deque<T>

list<T>

map<key, value>
multimap<key,value>

queue<T>
priority gqueue<T>

set<T>
multiset<T>

stack<T>

vector<T>

Double ended queue, fast insert/remove from
either end, indexable

Doubly linked list, fast insert/erase at
current location and either end, slow
traversal

Associates values with sorted list of keys,
fast insert/remove, fast access with index,

fast binary search. Map is indexable

First in, first out gqueue
Efficient insertion, removal of largest

Set of sorted keys, fast find/insert/remove

Last in, first out gueue

Slow insert/delete except at end, fast
access with index. Slow find.

Standard Template Library

STL Header Files for Containers

<array> array<T> Fixed array of elements of type T

<unordered set> unordered set<T> Unordered collection, constant time lookup,
- - insertion, removal

<unordered map> unordered map<k,v> Unordered key/value collection, constant
- - time lookup, insertion, removal

Standard Template Library 7

Other STL Header Files

<algorithm>

<functional>

<iterator>

<memory>

<numeric>

<utility>

find, find if, search,
copy, fill, count,
generate, min, sort,
transform,

swap,

bindlst,
equal to,
negate, minus,
plus,

bind2nd, divides,
greater, less,
multiplies,

operator+,
operator++,
operator¥*,

operator=,
operator--,
operator->,

allocator, operator==,
operator!=, operator=,
operator delete,
operator new

Accumulate,
partial sum,
adjacent difference

product,

pair, operator!=,
operator<=, operator>,
operator>=

applied to a container over
an iteration range

passed to an algorithm
instead of using function
pointers.

defines current location,
range of action on a
container or stream

supports redefinition of
allocation policy for
containers

applied to a container over
an iteration range

pair class and global
operators

Standard Template Library

STL Iterators

Input iterator

Output iterator

Forward iterator

Bidirectional iterator

Random access iterator

Read only, move forward

Write only, move forward

Read and write
Forward moving

Read and write

Forward and backward

Read and write
Random access

istream_iterator

ostream_iterator
inserter
front_inserter
back_inserter

list
set, multiset
map, multimap

C++ pointers
vector
deque

STL Functions

* unary functions:
* take single argument of the container’s value_type

// unary function
template <typename T>
void printElem(T val) {
cout << “value is: “ << val << endl;

}

void main() {
list< int > 1i;

// unary function used in algorithm
for_each(li.begin(), li.end(), printElem);

}

Standard Template Library

STL Functions

* predicate:
 function taking a template type and returning bool

// predicate
template <class T>
bool ispositive(T val) { return (val > 9); }

void main() {
list<int> 1i;

// return location of first positive value
list<int>::iterator iterFound =
find if(li.begin(), li.end(), ispositive<int>);

Standard Template Library

STL Function Objects

* Function objects:
* class with constructor and single member operator()

template <class T> class myFunc {
public:
myFunc(/*arguments save needed state info */) { }
T operator()(/* args for func obj */) {
/*
call some useful function with saved
state info and args as its parameters
*/
}
private:
/* state info here */

Standard Template Library

unary_function type

* The unary_function type serves as a base class for functors that will
be used in adapters like notl. It supplies traits needed by the
adaptors.

An example use follows on the next slide

#include <functional>

template <class Arg, class Result>
struct unary_function{

typedef Arg argument_type;
typedef Result result type;

}s

Standard Template Library

STL Function Adapters

* negators:
* notl takes unary_function predicate and negates it
* not2 takes binary_function predicate and negates it

// predicate
template <class T>
class positive : public unary_function

public:
bool operator()(T val) const { return (val > @); }
}s

void main() {
list<int> 1i;

// return location of first positive value
list<int>::iterator iter =
find _if(li.begin(), li.end(), positive);

// return location of first non-positive value
iter = find _if(1li.begin(), li.end(), notl(positive));
}

Standard Template Library

binary_function type

* The binary_function type provides traits needed by binary function
adapters, as illustrated on the next slide.

##tinclude <functional>

template <class Argl, class Arg2, class Result>
struct binary_ function

{

typedef Argl first _argument_type;

typedef Arg2 second argument_type;

typedef Result result type;

}s

Standard Template Library

STL Function Adapters

* binders:
* bind1 binds value to first argument of a binary_function
* bind2 binds value to second argument of binary _function

void main() {
list<int> 1i;
// return location of first value greater than 5

list<int>::iterator =
find if(li.begin(), li.end(), bind2(greater<int>(),5));

Standard Template Library

STL Function Objects

arithmetic functions
plus

minus

times

divides

modulus

negate

comparison functions
equal to

not equal to
greater

less

greater equal

less equal

logical functions
logical and
logical or
logical not

addition:
subtraction:
multiplication:
division:
remainder:
negation:

equality test:
inequality test:

greater-than comparison:

less—-than comparison:
greater or equal:
less or equal:

logical conjunction:
logical disjunction:
logical negation:

Standard Template Library

XX X X X

XoXo X X X X

KKK KK

17

Algorithms by Type

compare

copy

heap
operations

initialization
merge

min and max
permutations

remove

equal, lexicographical compare, mismatch

copy, copy backward

make heap, pop heap, push heap, sort heap

fill, fill n, generate, generate n
inplace merge, merge

max, max element, min, min element
next permutation, prev permutation

remove, remove copy, remove copy 1f,
unique, unique copy

Standard Template Library

remove 1f,

18

Algorithms by Type (continued)

scanning

Search

set operations

sorting

swap operations

transformations

accumulate, for each

adjacent find, count, count if, find, find if,
find first of, search

includes, set difference, set intersection,
set symmetric difference, set union

nth element, partial sort, partial sort copy, sort,
stable sort

swap, Swap_ ranges
partition, random shuffle, replace, replace copy,

replace copy if, replace if, reverse, reverse Ccopy,
rotate, rotate copy, stable partiton, transform

Standard Template Library

19

End of Presentation

Standard Template Library

