
C++ Operators

Jim Fawcett

CSE687-OnLine

Summer 2017

C++ Binary Operator Model

• A C++ operator is really just a function. Assignment, for example, may be invoked
either way shown below:

x = y;

or

x.operator=(y);

Here, the x object is invoking the assignment operator on itself, using y for the
assigned values.

• The left hand operand is always the invoking object and the right hand operand is
always passed to the function as an argument.

• General form of the binary operator:

x@y  x.operator@(y) - member function

x@y  operator@(x,y) - global function

mailto:x@y
mailto:x.operator@(y
mailto:x@y
mailto:operator@(x,y

Indexing Operators

• Indexing operators should usually come in pairs:

val& X::operator[](int n); x[3] = ‘a’;

val X::operator[](int n) const; char ch = x[2];

• The second form allows you to pass an indexed object into a function
by const reference and still be able to read indexed values.

With only the first form, any indexing in the function will result in a
compile time error since the operator does not guarantee not to
change the const object.

Unary Increment/Decrement Operators

This example based on iterators pointing to contiguous memory

iterator& operator++()
{ /* ++(this->ptr); return *this */ }

iterator operator++(int)
{ /* iterator temp = *this, ++(this->ptr), return temp */ }

iterator& operator--()
{ /* --(this->ptr); return *this */ }

iterator operator--(int)
{ /* iterator temp = *this; --(this->ptr), return temp */ }

Sum Operators

• Arithmetic operators should come in pairs. Addition looks like this:

X& X::operator+=(const X &x);
X X::operator+(const X &x);

Addition should be implemented this way:

X X::operator+(const X &x) {
X temp = *this; // copy of me
temp += x; // copy of me + x
return temp;

}

• You implement operator+=(…) first, and get operator+(…) almost for
free.

Overloading Arithmetic Operators

• Define:
operator+, operator-, operator*, and operator/

in terms of :
operator+=, operator-=, operator*=, and operator/=

• Remember the binary operator model:

operators as class members: x@y  x.operator@(y)

operators as global functions: x@Y  operator(x,y)

Insertion

• The insertion and extraction operators:

ostream& operator(ostream& out, const X &x);
istream& operator(ostream& in, const X &x);

Have to be implemented as global (non-member) functions since they are
invoked with the statements:

out << x; and in >> x;

• Since the streams, out and in, appear on the left side of the operator, and are
not objects of the X class, we must use the global form shown at the top of this
slide.

• You should try to implement them without making them friends of the X class.
You may need to implement public helper functions to do that.

End of Presentation

