C++ Operators

Jim Fawcett
CSE687-OnlLine
Summer 2017



C++ Binary Operator Model

A C++ operator is really just a function. Assignment, for example, may be invoked
either way shown below:

X =Y
or
x.operator=(y);

Here, the x object is invoking the assignment operator on itself, using y for the
assigned values.

The left hand operand is always the invoking object and the right hand operand is
always passed to the function as an argument.

General form of the binary operator:

X@y < x.operator@(y) - member function

X@y < operator@(x,y) - global function



mailto:x@y
mailto:x.operator@(y
mailto:x@y
mailto:operator@(x,y

Indexing Operators

* Indexing operators should usually come in pairs:

val& X::operator[](int n); x[3] = ‘a’;

val X::operator[](int n) const; char ch = x[2];

* The second form allows you to pass an indexed object into a function
by const reference and still be able to read indexed values.

With only the first form, any indexing in the function will result in a
compile time error since the operator does not guarantee not to
change the const object.



Unary Increment/Decrement Operators

This example based on iterators pointing to contiguous memory

iterator& operator++()
{ /* ++(this->ptr); return *this */ }

iterator operator++(int)
{ /* iterator temp = *this, ++(this->ptr), return temp */ }

iterator& operator--()
{ /* --(this->ptr); return *this */ }

iterator operator--(int)
{ /* iterator temp = *this; --(this->ptr), return temp */ }



Sum Operators

* Arithmetic operators should come in pairs. Addition looks like this:

X& X::operator+=(const X &x);
X X::operator+(const X &x);

Addition should be implemented this way:

X X::operator+(const X &x) {
X temp = *this; // copy of me
temp += X; // copy of me + Xx
return temp;

}

* You implement operator+=(...) first, and get operator+(..) almost for
free.



Overloading Arithmetic Operators

* Define:
operator+, operator-, operator*, and operator/

in terms of :
operator+=, operator-=, operator*=, and operator/=

* Remember the binary operator model:

operators as class members: X@y < x.operator@(y)
operators as global functions: x@Y < operator(x,y)



Insertion

* The insertion and extraction operators:

ostream& operator(ostream& out, const X &x);
istream& operator(ostream& in, const X &x);

Have to be implemented as global (non-member) functions since they are
invoked with the statements:

out << x; and in >> X;

* Since the streams, out and in, appear on the left side of the operator, and are
not objects of the X class, we must use the global form shown at the top of this
slide.

* You should try to implement them without making them friends of the X class.
You may need to implement public helper functions to do that.



End of Presentation



