
A Tour of Rust
the programming language

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/Resources/RustTour.pdf

https://jimfawcett.github.io/
https://jimfawcett.github.io/Resources/RustModels.pdf

Tour Prologue

• Rust is an interesting and ambitious language, similar to C++, but with some
unique differences.
• Compiles to native code, no need for garbage collection

• Emphasis on performance

• Rust features:
• Type Safety – unable to create undefined behavior, by construction

• Ownership model for all values

• Objects
• The language provides the usual set of primitive types

• All library and user types are created from structs and enums

• Generics
• Similar to Java and C# generics, rust has broad support for trait constraints

• Rust tool chain provides Cargo, a package manager, builder, and executor

2

https://JimFawcett.github.io/RustStory_Models.html

https://jimfawcett.github.io/RustStory_Models.html

Why Rust?
• Memory Safety

• No dangling pointers or null references

• No reading or writing to unowned memory

• Rust’s type system enforces sane ownership policies.

• No Data Races
• The same ownership policies applied to thread interactions ensures data race

free operation

• Performance
• As fast as C and C++

• Abstraction without Overhead
• Traits and Trait objects

• In the same ballpark as C++

3

Hello Rust World!

• This section assumes you have no experience with Rust.

• Getting started:
• Install Rust - https://www.rust-lang.org/tools/install

• This takes just a few minutes

• Puts cargo, Rust’s package manager, builder, executer on your path

• Install Visual Studio Code - https://code.visualstudio.com/download

• Now we’re ready for a hello world ++ experiment.
• Create a temporary directory and navigate to that in a command prompt.

• Issue command: cargo new hello

• Issue command: cd hello

• Issue command: code . [opens Visual Studio Code in hello directory]

4

https://www.rust-lang.org/tools/install
https://code.visualstudio.com/download

Hello World

5

Building and Running with Cargo

6

Cargo.toml – defines package

7

Add another function

8

Modify to use “object”

9

Why Rust?
• Memory Safety

• No dangling pointers or null references

• No reading or writing to unowned memory

• Rust’s type system enforces sane ownership policies.

• No Data Races
• The same ownership policies applied to thread interactions ensures data race

free operation

• Performance
• As fast as C and C++

• Abstraction without Overhead
• Traits and Trait objects

• In the same ballpark as C++

10

• A program is well defined if no execution can exhibit undefined
behavior.

• A language is type safe if its type system ensures that every program
is well defined.

• A non-type safe language may introduce undefined behavior with:
• Integer overflow, e.g., wrap-around

• Buffer overflow – out of bounds access

• Use after free – access unowned memory

• Double free – corrupt memory manager

• Race conditions – mutation without exclusive ownership

11

Type Safety

Undefined Behavior – C++ dangling reference

12

Undefined Behavior – C++ index out of bounds

13

In defense of C++ - Dangling Reference

• If we had used an iterator:
• auto iter1 = ++v.begin();

• v.push_back(4);

• Std::cout << *iter1; // throws exception – no undefined behavior

• It is standard practice to access containers with iterators, so well-
crafted C++ will not exhibit undefined behavior.

• The difference:
• With Rust you can’t get undefined behavior (UB) – most often programs fail to

compile if they would have UB.

• C++ code has to be well-crafted to avoid UB, errors are discovered at run-
time, not compile-time.

14

In defense of C++ - Index out of Bounds

• If we had used a range-based for loop:
• for(auto item : array) {

std::cout << item << “ “;
}

there is no chance of out-of-bounds indexing

• It is standard practice to traverse containers with range-based for
loops, so well-crafted C++ will not exhibit undefined behavior.

• The difference:
• With Rust you can’t get undefined behavior (UB) – out of bounds index causes

panic (exit) with no chance to access unowned memory.

• C++ code has to be well-crafted, using standard idioms, to avoid UB.

15

• Rust is a type safe language, avoiding undefined behavior.

• Rust’s type system prevents data races in multi-threaded
programs.

• Rust’s type system ensures this behavior with its Ownership
model:
• Prevent mutation combined with aliasing

• Ensure memory safety

• Prevent mutation, aliasing, and lack of access ordering
• Avoid data races

16

Safe Type System - Rust

Rust Ownership

• Ownership rules are, in principle, quite simple:
• Rust enforces Read-Write-Locks on data access at compile-time.

• Any number of readers may access value simultaneously.

• Writers get exclusive access to value – no other readers or writers.

• What are readers and writers?
• Any variable bound to a value with no mut qualifier is a reader.

• Original owner: let s = String::from(“a string”);

• References to the data: let r = &s;

• Any variable bound to a value with mut qualifier is a writer:
• Original owner: let mut s = String::from(“another string”);

• References to the data: let mut r = &s;

17

Hello Ownership!

• Rust’s ownership policies:
• Every value has one and only one owner

• Ownership can be transferred with a move

• Ownership can be borrowed with a reference
• References hold a view into value

• Original value’s owner can’t mutate value while borrowed

• Immutable references can be shared

• Mutable references are exclusive

• Borrowing ends when reference goes out of scope or is dropped

• This fits very well with pass by reference function arguments

• Variables are, by default, immutable, but can be made mutable
• let x = 3; // x is immutable

• let mut y = 3; // y is mutable

18

Hello Rust Ownership

19

Copies, Moves

• Copy
• Data resides in one contiguous block of memory (blittable)
• let x = 3.5;

• let y = x;

• y gets copy of x’s value ==> two separate locations holding the same value.

• Copy binding creates new owner of new data.

• Move
• Data resides in two or more blocks, usually one in stack, one in heap.
• let s = String::from(“a string”);

• let t = s;

• s value moved to t, s becomes invalid

• Move binding transfers ownership

20

Rust Move versus Copy

• Rust will copy any value
contained in a single contiguous
block of memory (blittable)
• let x = 2;

• let y = x; // copy

• Any value requiring separate
parts, like the string shown in
the right panel will be moved.
• let s = String::from(“a
string”);

• let t = s;
// value moved from s

// t owns string, s invalid

21

Move

• let s = String::from(“a string”);
• s consists of a control block in stack

memory and a character array in the
heap.

• let t = s;
• s’s control block is blitted to t

• That preserves the pointer to the heap
character array.

• So now t owns the string and s is marked
as invalid.

• This is fast. Characters are not copied,
only the small control block is copied.

Rust Clone

• Often a type satisfies clone trait
(if not you can add that).

• This allows moves to be avoided
by explicitly calling clone() to
make a copy.
• let t = s.clone();
// s still valid

• Clone must always be called
explicitly. Rust wants you to
know when you invoke an
expensive operation.

23

References and RwLocking
• Non-mutable Vec and references - all readers:

• let v = vec![1,2,3];

• let r1 = &v; let r2 = &v; // each has view of v’s data

• Mutable Vec, non-mutable references – creating reference inhibits Vec mutation:
• let mut v = vec![1,2,3];

• let r1 = &v; let r2 = &v; // each has view of v’s data

• r1 and r2 borrow v’s data ownership // v cannot mutate while borrows are active

• Borrows end when they go out of scope or are dropped, drop(r1);

• Mutable data, mutable reference – writer v’s ability to write borrowed
• let mut v = vec![1,2,3];

• let mut r = &v; // r has exclusively borrowed v’s ownership

• v cannot mutate until borrow ends

24

Rust won’t allow mutation with an active reference

25

Ownership summary

• These simple rules provide memory safety:
• let x = y ==> copy if blittable, otherwise move ==> transfer of ownership

• Can’t use y if moved from
• let r1 = &x; let r2 = &x;

==> may have any number of immutable references

• x may not be mutated while there are active references
• let mut z = …

• Let mut r3 = &z; ==> may only have one mutable reference

• References become inactive when they go out of scope or are
dropped:
• drop(r3);

• Prefer use of references for pass by reference functions and methods

29

Rust Object Model

• Rust does not have classes but structs are used in a way very similar
to the way classes are used in C++.

• Structs have:
• Composed members, may be instances of language or user defined types.

• Aggregated members, using the Box<T> construct:
• Box<T> acts like a std::unique_ptr<T> in C++.

• Methods - functions that accept &self which is a reference to the instance
invoking the function.
• &self is similar to the C++ pointer this.

• Traits - implemented by a struct, similar to Java or C# interfaces.

• Access control - uses the keyword pub.
• Anything not decorated with pub is private but accessible in the local crate.

30

Traits

• Traits provide a contract – function specifications – that guarantee
behavior.
• Any type that implements the Clone trait can be cloned by calling clone().

• Functions can accept arguments specified with either types or traits.
• Specifying arguments with traits is more powerful – and more expensive.

• Function will process any argument with a specified trait regardless of their
type.

• If a type implements a trait, the trait methods become part of the
public interface for that type, e.g., methods that can be called.

• You can even implement traits on existing types, much like C#
extension methods.

31

Common Traits

• Derivable Traits
• #[derive(Debug)]

• Debug, Display, Copy, Clone

• PartialEq, Eq, PartialOrd, Ord

• Hash, Default

• Common Rust Traits
• ToString, From, Into

• AsRef, DeRef

• Iterator

• Read, Write

• https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html

• https://stevedonovan.github.io/rust-gentle-intro/

32

https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
https://stevedonovan.github.io/rust-gentle-intro/

Implementing Traits and Methods
• trait Size {

fn size(&self) -> usize;
}

• trait Show : Debug {
fn show(&self) {

print!(“\n {:?}”, &self);
}

}

• #[derive(Debug, Copy, Clone)]
pub struct Test { x:i32, y:f64, }

• impl Size for Test {
fn size(&self) -> usize {

std::mem::size_of::<Test>()
}

}

• impl Show for Test {}
// using default impl

• impl Test {
pub fn new() -> Self {

Self { x:42, y:1.5, }
}
...

}

33

• trait Show : Debug { … }

• trait Size { … }

• struct Test { x:i32, y:f64, }

• impl Show for Test { … }

• impl Size for Test { … }

• impl Test { … }

34

Rust Object Model – Static Binding

35

• fn size_is(o:&dyn Size) ->usize {
o.size()

}

• trait Show : Debug { … }

• trait Size { … }

• struct Test { x:i32, y:f64, }

• impl Show for Test { … }

• impl Size for Test { … }

• impl Test { … }

• let mut t = Test { x:42, y:1.5, };

print!(
"size of t = {:?}", size_is(&t)

);
size_is(…) doesn’t know anything
about Test. It does know Size::size

Rust Object Model – Dynamic Binding

Copy and Move Types
• Copy types have instances that

can be copied and assigned.
• let t = Test::new();

• let u = t; // copy

• t = u; // assign

• Value types implement Copy and
Clone traits

• Move types have instances that
are moved instead of copied.
Any type that does not
implement Copy is a move type.

• Moveable types can implement
the Clone trait but not Copy.

• Test is a value type.

36

• trait Size {
fn size(&self) -> usize;

}

• trait Show : Debug {
fn show(&self) {

print!(“\n {:?}”, &self);
}

}

• #[derive(Debug, Copy, Clone)]
pub struct Test { x:i32, y:f64, }

• impl Size for Test {
fn size(&self) -> usize {

std::mem::size_of::<Test>()
}

}

• impl Show for Test {}
// using default impl

• impl Test {
pub fn new() -> Self {

Self { x:42, y:1.5, }
}

}

Comparison with C++

• C++ object model provides:
• Composition

• Aggregation

• Inheritance

• Most classes can be value types:
• Copy constructors

• Assignment operator overloads

• Destructors

• Many are value types by default
• Members are primitive types or

STL containers

• Rust object model provides:
• Composition

• Aggregation

• Traits
• Provide functions but no data

• Some structs are Copy, but many
must be Move.
• No overloads, so no overloaded

assignment operators

• Move types can implement clone()
but that is never called implicitly

37

C++ Person Class Hierarchy Example – from C++ Models

• The class structure shown on the right represents a
software development organization.

• Software Engineers inherit the person type and
implement the ISW_Eng interface. SW_Eng is an
abstract base class for all software engineers.

• Any function that accepts a pointer to SW_Eng will
also accept pointers to Devs, TeamLeads, and
ProjMgrs.

• If ISW_Eng defines a pure virtual method, say
doWork(), any derived class can override that
method.

• Devs doWork that devs do

• TeamLeads doWork that team leads do

• ProjMgrs doWork that project managers do

• So the doWork() method binds to code based on the
type of object bound to an ISW_Eng pointer.

38

Rust Generics

• Generic functions:

• fn demo_ref<T>(t:&T) where T:Debug {
show_type(t);
show_value(t);

}

• fn show_type<T: Debug>(_value:&T) {
let name = std::any::type_name::<T>();
print!(

“\n TypeId: {:?}, size: {:?}”,
name, size_of::<T>()

)
}

• Generic structs:

• #[derive(Debug)]
struct Point<T> { x:T, y:T, z:T }

39

• Rust Generics define trait constraints that limit the types that will compile.
• Rust generics do not support specializations that broaden the number of types

that can be used.

Traits

• Traits provide a contract – function specifications – that guarantee
behavior.
• Any type that implements the Clone trait can be cloned by calling clone().

• Functions can accept arguments specified with either types or traits.
• Specifying arguments with traits is more powerful – and more expensive.

• Function will process any argument with a specified trait regardless of their
type.

• If a type implements a trait, the trait methods become part of the
public interface for that type, e.g., methods that can be called.

• You can even implement traits on existing types, much like C#
extension methods.

40

Traits – Note: these traits don’t use T, but their implementation does

• trait Show : Debug {
fn show(&self) {

print!("\n {:?}", &self);
}

}

• trait Size {
fn size(&self) -> usize;

}

• fn size_is(o:&dyn Size) ->usize {
o.size()

}

• #[derive(Debug, Copy, Clone)]
pub struct Point<T>{ // public type
x:T, y:T, z:T, // private data

}

• impl<T> Show for Point<T>
where T:Debug {} // using default impl

• impl<T> Size for Point<T> {
// must provide impl

fn size(&self) -> usize {
std::mem::size_of::<Point<T>>()

}
}

• let mut t =
Point { x:0.0, y:1.0, z:0.5, };

• t.show();

• print!(
"\n size of t = {:?}", size_is(&t)

);

41

size_is(o:&dyn Size) accepts both
ordinary and generic arguments

Generics Summary

• Generics help us build flexible code:
• Create collections that can hold many different types, but we need only one

design.

• Generics with traits provide even more help
• Define functions and methods that accept arguments that satisfy a trait

specification.

• Much more flexible than defining functions that take specific typed
arguments.

• Allows us to specify that only some categories of types should be accepted,
e.g., move-able, or clone-able, or display-able.

42

Program Execution

• There are three ways to execute code in a fully formed crate, using cargo:
• Execution of binaries:

If the crate root is a binary, e.g., main.rs, the command
cargo run

will execute the program

• Testing libraries:
If the crate root is a library, e.g., lib.rs, the command

cargo test
will run any tests configured at the end of the library. Tests pass if there are no assertions in
the test code, and fail if there are.

• Running examples:
For library crates, if you create an /examples folder and put demonstration modules there,
then the command

cargo run –example an_example
will run the code in an_example.rs, assuming that you’ve supplied a main function for that
module. The user expects that this code will demonstrate use of library functionality.

53

Rust Pain Points
• Ownership

• Conceptually simple, must handle details to compile 

• Compiler error messages are very good ☺

• Error Handling
• All cases of all errors have to be handled to compile

• Many examples use naïve handling, e.g., panic.
• Not a good idea for anything other than demo code.

• Strings
• String, &str, OsString, &OsStr, PathBuf, &Path

• No indexing, can use iterator

• Explicit conversions
• Virtually no implicit conversions

57

Rust Gain Points
• Ownership

• No undefined behavior or data races by construction

• Error Handling
• No surprises at run-time.

• Get coherent error messages instead of aborts.

• Strings
• Utf-8 strings can represent characters from many languages and math symbols

• Explicit conversions
• No surprises from unexpected conversions

• Suitable for safety critical applications, e.g., vehicle control, medical and financial
applications.
• Need all of the above

• Eliminates many of the vectors for malware threats

58

Epilog

https://jimfawcett.github.io/RustStory_Prologue.html

https://jimfawcett.github.io/RustStory_Prologue.html

Conclusions

• If you understand the models, we’ve covered, I think you will find Rust syntax and
semantics to be convenient and sensible.

• Some particular parts of the language discussed in the Rust Story but not here are
intricate and require some study to master:
• String syntax and semantics because the only character type Rust recognizes in its native

strings, String and Str, is utf-8, which uses multi-byte characters of varying sizes.

• Life-time annotation needed for some scenarios using generics.

• Many crates in https://crates.io are used routinely by knowledgeable Rust developers, but
some take significant amounts of time and effort to use effectively.

• Rust avoids undefined behavior by incorporating a safe type system. That is
based on the ownership rules we’ve discussed. It takes a while to get use to the
rules, but compiler error messages are usually very good.

60

https://crates.io/

Presentation Resources

• The ideas discussed in this presentation are drawn from a web page:
https://jimfawcett.github.io/RustStory_Models.html

which is part of the Rust Story:
https://jimfawcett.github.io/RustStory_Prologue.html

• And code examples for the story are documented here:
https://jimfawcett.github.io/RustStoryRepo.html

• These slides are available here:
https://jimfawcett.github.io/Resources/RustTour.pdf

61

https://jimfawcett.github.io/RustStory_Models.html
https://jimfawcett.github.io/RustStory_Prologue.html
https://jimfawcett.github.io/RustStoryRepo.html
https://jimfawcett.github.io/Resources/RustTour.pdf

Background

• The material for this presentation comes from the github website:
• https://JimFawcett.github.io,

https://jimfawcett.github.io/Resources/RustModels.pdf

• The site provides a curated selection of code developed for graduate
software design courses at Syracuse University

• It also contains tutorial and reference materials related to that code.

• Some of that is presented in the form of “stories”

• Rust Models is the title of the first chapter of a “Rust Story”
• The story is a detailed walk-through of the Rust programming language. It

provides reference material for a set of repositories that hold source code for
utilities, tools, components, and demonstrations.

62

https://jimfawcett.github.io/
https://jimfawcett.github.io/Resources/RustModels.pdf
https://jimfawcett.github.io/CppStory_Prologue.html
https://jimfawcett.github.io/CppRepositories.html

	Slide 1: A Tour of Rust the programming language
	Slide 2: Tour Prologue
	Slide 3: Why Rust?
	Slide 4: Hello Rust World!
	Slide 5: Hello World
	Slide 6: Building and Running with Cargo
	Slide 7: Cargo.toml – defines package
	Slide 8: Add another function
	Slide 9: Modify to use “object”
	Slide 10: Why Rust?
	Slide 11
	Slide 12: Undefined Behavior – C++ dangling reference
	Slide 13: Undefined Behavior – C++ index out of bounds
	Slide 14: In defense of C++ - Dangling Reference
	Slide 15: In defense of C++ - Index out of Bounds
	Slide 16
	Slide 17: Rust Ownership
	Slide 18: Hello Ownership!
	Slide 19: Hello Rust Ownership
	Slide 20: Copies, Moves
	Slide 21: Rust Move versus Copy
	Slide 22: Move
	Slide 23: Rust Clone
	Slide 24: References and RwLocking
	Slide 25: Rust won’t allow mutation with an active reference
	Slide 29: Ownership summary
	Slide 30: Rust Object Model
	Slide 31: Traits
	Slide 32: Common Traits
	Slide 33: Implementing Traits and Methods
	Slide 34: Rust Object Model – Static Binding
	Slide 35: Rust Object Model – Dynamic Binding
	Slide 36: Copy and Move Types
	Slide 37: Comparison with C++
	Slide 38: C++ Person Class Hierarchy Example – from C++ Models
	Slide 39: Rust Generics
	Slide 40: Traits
	Slide 41: Traits – Note: these traits don’t use T, but their implementation does
	Slide 42: Generics Summary
	Slide 53: Program Execution
	Slide 57: Rust Pain Points
	Slide 58: Rust Gain Points
	Slide 59: Epilog
	Slide 60: Conclusions
	Slide 61: Presentation Resources
	Slide 62: Background

