
C++ Models

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

Model

• “A model of a system or process is a theoretical description that can
help you understand how the system or process works, or how it
might work.”
- collinsdictionary.com

• “A system or thing used as an example to follow or imitate.”
- Merriam-Webster Dictionary

2

C++ Models – Chapter 1 of C++ Story

• Code Structure

• Compilation Model

• Program Execution Model

• Memory model

• Classes

• Object Model

• Templates

3

Part 1.

Background

• The material for this presentation comes from the github website:
• https://JimFawcett.github.io,

https://JimFawcett.github.io/Resources/CppModel.pdf

• The site provides a curated selection of code developed for graduate
software design courses at Syracuse University

• It also contains tutorial and reference materials related to that code.

• Some of that is presented in the form of “stories”

• C++ Models is the title of the first chapter of a “C++ Story”
• The story is a detailed walk-through the C++ programming language. It

provides reference material for a set of repositories – 61 at last count – that
hold source code for utilities, tools, components, and demonstrations.

4

https://jimfawcett.github.io/
https://jimfawcett.github.io/Resources/CppModel.pdf
https://jimfawcett.github.io/CppStory_Prologue.html
https://jimfawcett.github.io/CppRepositories.html

Prologue

• C++ is a large and ambitious language.

• Models help us understand important features of the language
• Show the language’s internal consistency

• Help us understand and use it effectively

• We will consider:
• Code Structure, Compilation, and Execution

• Use of memory

• Classes and the C++ object model

• Templates

5

C++ Models
Model 1 – Code Structure

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

1. Code Structure https://jimfawcett.github.io/CppStory_Models.html#structure

• Source code is written in files

• For many software systems file structures become large and hard to understand.

• To support readability and maintenance, we create packages that consist of a few
files with a single purpose and document the purpose and design in comments.
• Files are units of construction

• Packages are units of documentation

• The C++ build system does not recognize packages, but it does recognize projects.

• Packages are simply groups of one or more files, stored in a single directory, annotated with
comments to support understanding, test, and maintenance, with a project for building.

• Packages are units of documentation and translation
• Each has a Visual Studio project or make file

7

https://jimfawcett.github.io/CppStory_Models.html#structure

Packages
• A package consists of:

• a single Package_Name.cpp file with construction test main function

• a header file Package_Name.h

• Optionally may have an interface file, IPackage_Name.h

• These parts are embedded in a directory with project file or make file
• Used to build the construction test.

• The directory may also include files from other packages on which this
package depends.

• Alternately, a project package makes references to libraries for packages on
which it depends instead of including the files in its package directory.

• Each package is expected to implement a single responsibility and
have code comments that describe its operation.

8

Package Construction Co-Tests

• For anything other than trivial example code it’s very useful to test as
we build code:
• Add a main function for every .cpp file.

• Every time we add a few lines of code we add small tests in the main then
build and execute.

• This “co-test” process allows us to very quickly find errors. If a test fails, the
problem is almost certain to be in the few lines of code we entered after the
last test.

• We wrap the main function in #ifdef TEST_NAME … #endif directives.
• When TEST_NAME is defined we run the package test.

• When not defined we can combine the package with other packages to build a larger
executable.

9

Example – Files and Packages

• The diagram at the top shows a set
of packages that represent the files
shown at the bottom.

• The file diagram shows file include
relationships.
• Both Executive.cpp and

Component_B.cpp include a header
file IComponent_A.h

• Include files provide type
information that is declared
elsewhere.

• The Component_A package contains
all the files with names containing
Component_A.

• Code for this example:
https://github.com/JimFawcett/CppStory
in Chapter1-Structure

10

https://github.com/JimFawcett/CppStory

Example - Classes

• This diagram shows classes that are defined in
each of the files from the previous slide.
• IComponent_A is an interface1 for Component_A

• Component_A implements the interface to
provide exported services

• Component_B doesn’t provide an interface,
composes class Helper

• Component_B uses Component_A through its
interface and factory2

• Executive uses Component_A through its
interface, composes Component_B

1. C++ does not have an interface construct. We use structs with
pure virtual functions for that purpose.

2. Component_A’s factory is implemented with a function,
declared in IComponent_A.h. and implemented in
Component_A.cpp

11

Use of Interfaces and Factories

• If you look at interface IComponent_A.h you will see it has no implementation
detail.

struct IComponent_A {
virtual ~IComponent_A() {}
virtual void say() = 0;

};

inline std::unique_ptr<IComponent_A>
createComponent_A(const std::string& id);

• That means that Executive and Component_B have no build dependencies on
Component_A. Component_A can change any of its implementation without
affecting Executive or Component_B as long as the interface, IComponent_A
and factory function signature don’t change.

12

Object Factories

• There are two kinds of object factories:

1. Factories that return a smart pointer referring to a newly
created instance of a component in the native heap.

std::unique_ptr<IComponent> createComponent() { … }

2. Singleton factories that return a reference to a static component.

IComponent& getComponentInstance() { … }

• You can find examples of both in the Logger repository:

https://JimFawcett.github.io/Logger.html

in files ITestLogger.h and IQTestLogger.h

13

https://jimfawcett.github.io/Logger.html

C++ Models
Model 2 - Compilation

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

2. Compilation Model https://jimfawcett.github.io/CppStory_Models.html#compil

• The C++ build process translates
each *.cpp file independently.

• We say that a *.cpp file and all its
include files are a translation unit.

• Translation begins by inserting the
contents of each included *.h file
into the *.cpp file at the site of the
include.

• That is then compiled into an
object file, *.obj.

• That process is repeated for all cpp
files in the current build.

• The linker then binds the obj files
into an executable.

15

https://jimfawcett.github.io/CppStory_Models.html#compil

Compilation Model

• One consequence of this build process is the
definition first rule.

• The C++ language was designed to support
one-pass compilation.

• The compiler can’t layout code for an instance
until it knows the instance’s size.

• That comes from seeing the class, struct, or
enum declaration.

• You can create a pointer to an incomplete
type, e.g., forward declaration like class A;
but you can’t use it until after the type is
completed with a declaration.

• Definition First Rule
• Instances of classes, structs, and enums can

be created only after those entities are
declared.

• If you think of a cpp file as an ocean of
syntax and its include files as syntax
tributaries filling the ocean, then the
entity declarations must be upstream
from the point of entity creation. Here,
upstream simply means compiler scan
order.

16

C++ Models
Model 3 - Execution

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

3. Program Execution https://jimfawcett.github.io/CppStory_Models.html#execute

• When the executable for a
program is loaded:
• Initialization code provided by the

compiler executes

• Then the function main is
entered.
• main is just a function that is

defined to the linker as the entry
point for processing.

• Some project types will use other
names, e.g., WinMain

• Any function may call other
functions within the
executable.

18

https://jimfawcett.github.io/CppStory_Models.html#execute

Use of program memory

• When the thread of execution enters a function an
allocation of stack memory is used to store function
parameters and any local data defined in the function.
• The same thing happens for every scope, defined by a

matching pair of braces, { and }. For example, an if statement,
using braces, allocates stack memory to hold data local to its
scope.

• A program may place any of its entities, e.g., an instance
of a user-defined class, into static memory, stack
memory, or heap memory.

• We will discuss the consequences of that in the next
section.

19

Interaction with the Execution Environment

• There are two primary ways for a C++ program to
observe and use its execution environment:
• Use a stream object like std::cout or std::cin.

• Classes for streams are provided by the standard library,
via include statements:

#include<iostream>, #include<fstream>, …

• The std::iostream library defines global objects:
std::cout, std::cin, std::cerr, std::clog

that are always accessible to a program.

• The program may use services of its platform API by
including certain header files specific to each
platform, e.g., windows, linux, …

20

C++ Models
Model 4 - Memory

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

4. Memory Model https://JimFawcett.github.io/CppStory_Models.html#memory

• Static memory is used to store code
and entities that live for the entire
program execution

• Stack memory is used as scratch-pad
to store information needed in each
scope, e.g., local data. It becomes
invalid when the thread of execution
leaves the scope.

• Heap memory is used to store entities
that live from the time the program
creates them with a call to new until
the program discards them with a call
to delete

22

https://jimfawcett.github.io/CppStory_Models.html#memory

Control of entity placement in memory
• The compiler places all code and global data in static

memory.

• A program can place an entity instance in static
memory by qualifying its declaration with the
keyword static.

• C++ code also places entities in stack memory by
calling a function, placing function parameters and
local data in its stack frame.

• Also, every local scope, defined by braces, { and },
creates a new allocation of stack memory to hold
data local to that scope.

• An entity instance is placed in heap memory by a call
to new and removed with a call to delete.

23

C++ Models
Model 5 - Classes

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

5. Classes https://jimfawcett.github.io/CppStory_Models.html#class

• Classes are units of data management.

• A class is a “cookie cutter” for stamping out class
instances in memory.

• Each instance has member data that has been
initialized by a class constructor.

• When an instance method is invoked, say
p1.name(“p1”), the code in static memory needs to
know which instance invoked its name method. Each
call of a non-static method sends its address to its
code in static memory in an implicit argument called
“this”. The code may then mutate p1’s state as
defined by the method using this pointer.

25

https://jimfawcett.github.io/CppStory_Models.html#class

Point Class
• A class designed to represent points in some space

might be declared as shown on the right.

• The space might represent physical space-time, so
the coordinates might be physical x, y, z, t values
representing width, depth, height, and time.

• If we declare an instance of Point locally in some
function, the member data of the class will be
stored in stack memory.

• However, the std::vector<double> stores its contents, the
coordinates in this case, in the native heap.

• Strings do the same thing. All string characters are also
stored in the heap.

• The size of this object, used by the compiler to set up
allocation for the function’s stack frame, is just the static
memory consumed by each data member. It does not
include heap allocations, because that is allocated at run
time, not by the compiler. This is what the sizeof operator
measures.

class Point {
public:

using iterator = std::vector<double>::iterator;
using const_iterator =

std::vector<double>::const_iterator;
Point(size_t N, const std::string& name = "none");
Point(std::initializer_list<double> il);
void name(const std::string& name);
std::string name() const;
double& operator[](size_t i);
double operator[](size_t i) const;
size_t size() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

private:
std::string name_ = "unspecified";
std::vector<double> coordinates_;

};

26

C++ Models
Model 6 – Object Model

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

6. C++ Object Model https://jimfawcett.github.io/CppStory_Models.html#objmodel

• The C++ object model is concerned with
how compound objects are laid out in
memory.

• Structs and classes support five
relationships that bind objects together to
build compound objects: inheritance,
composition, aggregation, using, and
friend-ship.

• Inheritance causes base class instances to be
encapsulated within the memory footprint of
instances of classes that derive from them.

• Composition does the same thing. A composing
class instance contains an instance of each class
it composes.

• These are strong owning relationships. Weak
ownership – aggregation, and non-owning
relationships - using, and friend-ship - do not
cause this encapsulation.

28

https://jimfawcett.github.io/CppStory_Models.html#objmodel

Object Construction

• When B is constructed its C component is
constructed in its memory footprint. That means
that C is constructed as part of B’s construction.

• When D is constructed its base B is constructed in its
memory footprint. So B is constructed as part of D’s
construction.

• These are required events that affect the syntax of
the constructors we write.
• We use an initialization sequence for B to determine

how C is to be constructed.

• Similarly, D uses an initialization sequence to
determine how B is constructed.

• Code for this example:
https://github.com/JimFawcett/CppStory in
Chapter1-Classes

• Documented in:
https://JimFawcett.github.io/CppStoryRepo.html

29

Point::Point(size_t N, const std::string& name)
: name_(name)
{
coordinates_.reserve(N);

}

Initialization sequence

https://github.com/JimFawcett/CppStory
https://jimfawcett.github.io/CppStoryRepo.html

Value Types
• Value types have instances that can be

copied and assigned.

• C++ has been designed from the beginning to
support creation of user-define value types.
• If class member data and base member data have

correct copy and assignment semantics, copies
are made by copying each of the class and base
members, and for assignment the process is the
same. Examples are classes with only fundamental
types and STL containers as data members.

• If class members do not have correct copy and
assignment semantics C++ supports the definition
of copy constructors and assignment operators
that the developer designs to provide correct copy
and assignment operations. Examples are classes
that contain pointer data members.

• Point is a value type.

class Point {
public:

using iterator = std::vector<double>::iterator;
using const_iterator =
std::vector<double>::const_iterator;

Point(size_t N, const std::string& name = "none");
Point(std::initializer_list<double> il);
void name(const std::string& name);
std::string name() const;
double& operator[](size_t i);
double operator[](size_t i) const;
size_t size() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

private:
std::string name_ = "unspecified";
std::vector<double> coordinates_;

};

30

C++ Models
Model 7 – Polymorphism

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

7. Polymorphism

• When a class D derives from some class B it
inherits all of the methods and data of B.

class D : public B { … };

• If there are multiple derived classes: D1, D2, …
a base class pointer or reference can be bound
to any one of them:

B* pB = &D1
B& br = D2;

• Functions that accept a base pointer will
accept a base pointer bound to any derived
class:

fun(pB)

This allows fun to process any of the derived
objects using syntax specified by the base
class.

32

• Inheritance supports two features:
1. Inheritance of implementation, e.g., all

of the methods of a base class

2. Substitution of derived instances in
functions that are typed to accept base
pointers or references.

• Of these two features, substitutability is the
more important. It allows us to build very
flexible code.
• If we need to add a new derived class, all

the functions that accept base pointers or
references don’t change. They simply use
the base class language, inherited by every
derived class, to interact with that input.

Virtual Function Dispatching
• Every class that includes one or more virtual

functions has a Virtual function pointer Table
(VTBL)

• The class B defines three virtual functions and for
each of those its VTBL has a pointer bound to the
code defined for that function.

• Class D, derived from B, has a VTBL with pointers
to code for each of its functions.

• pMf1 points to B:Mf1 because D did not override that
method

• pMf2 points to D:Mf2 because D did override that method.

• pMf3 points to code for a new virtual function defined in D
but not in B.

• When we invoke a method on a derived instance
using a base pointer, the code invoked is reached
through one of the VTBL pointers.

33

Person Class Hierarchy Example
• The class structure shown on the right represents a

software development organization.

• Software Engineers inherit the person type and
implement the ISW_Eng interface. SW_Eng is an
abstract base class for all software engineers.

• Any function that accepts a pointer to SW_Eng will
also accept pointers to Devs, TeamLeads, and
ProjMgrs.

• If ISW_Eng defines a pure virtual method, say
doWork(), any derived class can override that
method.

• Devs doWork that devs do

• TeamLeads doWork that team leads do

• ProjMgrs doWork that project managers do

• So the doWork() method binds to code based on the
type of object bound to an ISW_Eng pointer.

34

C++ Models
Model 8 – Templates

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

8. Templates https://jimfawcett.github.io/CppStory_Models.html#templ

• Function and class templates are code
generators that create functions or classes
from parameterized patterns.

• Function templates generate concrete
functions and class templates generate
concrete classes when supplied, in application
code, with specific types.

• The class template, shown top right,
generates a point class for each T specified in
application code. Here, the using code has
instantiated it with two types, int and double,
resulting in Point<int> and Point<double>,
two distinct classes.

36

https://jimfawcett.github.io/CppStory_Models.html#templ

Template Class Example
template<typename T>
class Point {
public:

using iterator = typename
std::vector<T>::iterator;

using const_iterator = typename
std::vector<T>::const_iterator;

Point(size_t N, const std::string& name = "none");
Point(std::initializer_list<T> il);
void name(const std::string& name);
std::string name() const;
T& operator[](size_t i);
T operator[](size_t i) const;
size_t size() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

private:
std::string name_ = "unspecified";
std::vector<T> coordinates_;

};

37

template<typename T>
Point<T>::Point(size_t N, const std::string& name) :
name_(name)
{
coordinates_.reserve(N);

}

template<typename T>
Point<T>::Point(std::initializer_list<T> li) : name_("none") {
for (auto item : li)

coordinates_.push_back(item);
}

template<typename T>
std::string Point<T>::name() const { return name_; }

template<typename T>
void Point<T>::name(const std::string& name) { name_ = name; }

template<typename T>
T& Point<T>::operator[](size_t i) {
if (i < 0 && coordinates_.size() <= i)

throw(std::exception());
return coordinates_[i];

}

// remaining method implementations elided

Template overloads and Specialization
• Template specification provides a pattern for generating specific

code for a function or class.

• That gets instantiated by something close to substitution,
subject to type deduction for classes or overload resolution for
functions.

• That may work well for most of the types an application uses but
may fail for one or more specific types.

• In that case, a function may be defined for specific type(s) that
has modified code. C++ guarantees that the overload will be
chosen if the application supplied type matches the overload.

• Similarly, a class may be defined for specific type(s) that has
modified code. The language guarantees that the specialization
will be chosen, instead of the generic class, if the application
type matches the specialization, using template type deduction.

• A designer may provide any number of overloads and
specializations as needed by the application.

38

C++ Models
Conclusions

Jim Fawcett

https://JimFawcett.github.io

https://jimfawcett.github.io/

Conclusions

• If you understand the 8 models, we’ve covered, I think you will find C++ syntax
and semantics to be consistent and sensible.

• Some particular parts of the language discussed in the C++ Story but not here are
intricate and require some study to master:
• Template type deduction

• Function overload resolution

• Template metaprogramming

• But template type deduction and template function resolution just seem to work
without deep analysis most of the time.

• Template metaprogramming is used largely by library developers, but is getting
easier to use with each new version of the C++ standard.

40

Location of Resources

41

Presentation Resources

• The ideas discussed in this presentation are drawn from a web page:
https://JimFawcett.github.io/CppStory_Models.html

which is part of the CppStory:
https://JimFawcett.github.io/CppStory_Prologue.html

• And code examples for the story are documented here:
https://JimFawcett.github.io/CppStoryRepo.html

• These slides are available here:
https://JimFawcett.github.io/Resources/CppModels.pdf

42

https://jimfawcett.github.io/CppStory_Models.html
https://jimfawcett.github.io/CppStory_Prologue.html
https://jimfawcett.github.io/CppStoryRepo.html
https://jimfawcett.github.io/Resources/CppModels.pdf

Epilogue

• In this presentation we’ve discussed models for:
1. Code Structure
2. Compilation
3. Program Execution
4. Program use of Memory
5. Classes
6. C++ Objects
7. Polymorphism
8. Templates

• We’ve focused on models and ideas, not the details of design and syntax.

• You can find an extended discussion of C++ in the CppStory:
https://JimFawcett.github.io/CppStory_Prologue

• There is a lot of sample code for the CppStory:
https://github.com/JimFawcett/CppStory

• With documentation:
https://JimFawcett.github.io/CppStoryRepo.html

43

https://jimfawcett.github.io/CppStory_Prologue
https://github.com/JimFawcett/CppStory
https://jimfawcett.github.io/CppStoryRepo.html

